Skip to main content
Erschienen in: Energy Systems 4/2018

04.07.2017 | Original Paper

Current and potential decommissioning scenarios for end-of-life composite wind blades

verfasst von: Nicholas Sakellariou

Erschienen in: Energy Systems | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Contrary to other wind turbine components such as steel towers, concrete foundations and the high value metals used in generator linings, whose end-of-life is properly described in life cycle assessment (LCA) studies, composite blades have proven to be the sustainability blind spot of wind energy systems. The reason for this is that end-of-life management of composite wind blades is a complex engineering problem which depends on the actual design of the blade, its material composition, the availability of recycling technology, legislation and requisite infrastructure, as well as the economics of the process itself—including the logistics of transportation, dismantling, etc. This paper offers a comprehensive analysis of current and potential decommissioning scenarios for end-of-life composite wind blades. Based on 40, in depth, semi-structured interviews with North American and European wind energy experts and a meta-analysis of 52 LCAs of wind energy this paper argues that over approximately the next 5 years, the wind industry will face a significant challenge: as the focus on sustainability engineering and product stewardship shifts the waste disposal responsibility to original equipment and component manufacturers, wind system LCAs may include—and may increasingly become more important in determining—end-of-life scenarios for composite blade waste. It is still too early to ascertain whether LCA will determine the future of composite wind blade recycling by either promoting or legitimizing a certain scenario over another. Nevertheless, as LCAs becoming increasingly more popular in both wind energy and composite recycling, a likely conclusion is that as more economically viable recycling options become available, LCAs will examine the decommissioning phase of used and damaged blades in more detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The interviews for this article were conducted between 2012 and 2014 while the author was working as a doctoral candidate at the department of Environmental Science, Policy and Management at the University of California at Berkeley. The interviewees (engineers by training, LCA experts, renewable energy and recycling company owners, as well as sustainable materials researchers) were contacted via email and a questionnaire was provided to them after they had agreed to participate in the research. The interviews were recorded (upon interviewee’s informed consent) and the data was transcribed. The research was supported by National Science Foundation award NSF #1354545. Unless the interviewees requested otherwise, the data for this article is presented anonymously.
 
2
This is true in the US (several interviewees). Simon Joncas (personal communication) reported that the same applies to wind farms in Quebec, Canada.
 
3
The company claims that producing only 500 items from each category of its products would require over 3 million pounds of fiberglass per month (personal communication).
 
4
In this context, the idea of transitioning to what most experts consider “a second-rate performing alternative” [biocomposites] does not seem viable in the highly competitive nature of wind energy (interview data).
 
5
Windflow New Zealand uses laminated wood veneer (Pinus radiata) to produce blades with outstanding stiffness/weight and fatigue properties. Commercially available wood veneers (with commercially available quality controls for density and moisture) laminated with commercially available epoxies result in laminate structures with well characterized fatigue strengths which can be used in independently certified wind turbine blade designs. As of March 2013, Windflow had sold 224 blades (John Arimond and Peter Brooking, personal communication).
 
6
According to Dr. Conchur O’Bradiagh, joint managing director of the company, “that business is growing.” Micro wind turbine technology was first commercialized with a Scottish company (Proven Energy), which went into liquidation in late 2011 and was later purchased out of liquidation by the top small turbine company Kingspan (Ireland). Kingspan has relaunched the six-kilowatt machine on the market, and more recently a fifteen-kilowatt machine. (All data on Gaoth Tec Teo’s technology have been drawn from personal communication with Dr. O’Bradiagh).
 
7
Comparing data from the World Wind Energy Association (WWEA)—and assuming a 20-year lifespan for a wind turbine’s blades—Vestas researchers have claimed that by 2017 “there will be a significant increase in the decommissioning of wind turbines” [8].
 
8
Julie Teuwen, the TU Delft PhD. and thermoplastic blades expert, now works for GBT.
 
9
Data from [30], LMWindpower.com, and personal communication with LM personnel. LM had a 47% market share in 2001, 25% in 2008 and 14% in 2011. In 2010, LM expanded its operations in China and India (4 new facilities; expansion of already existing facilities). As of October 2012, LM Wind confirmed plans to construct a blade facility in Brazil.
 
10
[15] notes that LM Wind’s insistence on polyester is due to the cost benefits: epoxy is approximately three times more expensive than polyester.
 
11
[16].
 
12
In Germany, Denmark and India, a wind turbine has to have a valid certification to get a building permission. In The Netherlands and most of the other European countries, as well as in the US, Canada and Australia, investment groups and banks require certification for the turbines—including the blades.
 
Literatur
1.
Zurück zum Zitat AECOM Australia Pty Ltd.: Decommissioning and Rehabilitation Plan. Crookwell 3 Wind Farm Project (2012) AECOM Australia Pty Ltd.: Decommissioning and Rehabilitation Plan. Crookwell 3 Wind Farm Project (2012)
2.
Zurück zum Zitat Albers, H., Greiner, S., Seifert, H., Kühne, U.: Recycling of wind turbine rotor blades—fact or fiction? DEWI MAGAZIN. 34, 32–41 (2009) Albers, H., Greiner, S., Seifert, H., Kühne, U.: Recycling of wind turbine rotor blades—fact or fiction? DEWI MAGAZIN. 34, 32–41 (2009)
3.
Zurück zum Zitat Andersen, P. D., Borup, M., Krogh, T.: Managing long-term environmental aspects of wind turbines: a prospective case study. I J T P M 7, 339–354 (2007) Andersen, P. D., Borup, M., Krogh, T.: Managing long-term environmental aspects of wind turbines: a prospective case study. I J T P M 7, 339–354 (2007)
4.
Zurück zum Zitat Bernasconi, A., Rossin, D., Armanni, C.: Analysis of the effect of mechanical recycling upon tensile strength of a short glass fibre reinforced polyamide 6,6. Eng. Fract. Mech. 74, 627–641 (2007)CrossRef Bernasconi, A., Rossin, D., Armanni, C.: Analysis of the effect of mechanical recycling upon tensile strength of a short glass fibre reinforced polyamide 6,6. Eng. Fract. Mech. 74, 627–641 (2007)CrossRef
6.
Zurück zum Zitat Cherrington, R., Goodship, V., Meredith, J.O., Wood, B.M., Coles, S.R., Vuillaume, A., Feito-Boirac, A., Spee, F., Kirwan, K.: Producer responsibility: defining the incentive for recycling composite wind turbine blades in Europe. Energ. Policy. 47, 13–21 (2012)CrossRef Cherrington, R., Goodship, V., Meredith, J.O., Wood, B.M., Coles, S.R., Vuillaume, A., Feito-Boirac, A., Spee, F., Kirwan, K.: Producer responsibility: defining the incentive for recycling composite wind turbine blades in Europe. Energ. Policy. 47, 13–21 (2012)CrossRef
7.
Zurück zum Zitat Duflou, J.R., Deng, Y., Van Acker, K., Dewulf, W.: Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. MRS Bull. 37, 374–383 (2012)CrossRef Duflou, J.R., Deng, Y., Van Acker, K., Dewulf, W.: Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. MRS Bull. 37, 374–383 (2012)CrossRef
8.
Zurück zum Zitat Dyer, A.: Innovate10 sustainability seminar vestas recycling project (2010) Dyer, A.: Innovate10 sustainability seminar vestas recycling project (2010)
10.
Zurück zum Zitat Gardiner, G.: Carbon fiber in the wind. Composites World, 1 July 2007 Gardiner, G.: Carbon fiber in the wind. Composites World, 1 July 2007
11.
Zurück zum Zitat Goodman, J.H.: Architectonic reuse of wind turbine blades. SOLAR 2010 ASES Conf., May 2010, Phoenix Goodman, J.H.: Architectonic reuse of wind turbine blades. SOLAR 2010 ASES Conf., May 2010, Phoenix
12.
Zurück zum Zitat Gurit Magazine: TechTalk: building wind turbine blades with carbon fibre sparpreg. The Gurit Magazine (2012) Gurit Magazine: TechTalk: building wind turbine blades with carbon fibre sparpreg. The Gurit Magazine (2012)
15.
Zurück zum Zitat Joncas, S.: Thermoplastic composite wind turbine blades. Universite du Quebec, Canada, An integrated design approach, Master in mechanical engineering (2010) Joncas, S.: Thermoplastic composite wind turbine blades. Universite du Quebec, Canada, An integrated design approach, Master in mechanical engineering (2010)
16.
Zurück zum Zitat Kabir, MdR, Rooke, B., Dassanayake, G.D.M., Fleck, B.A.: Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation. Renew. Energ. 37, 133–141 (2012)CrossRef Kabir, MdR, Rooke, B., Dassanayake, G.D.M., Fleck, B.A.: Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation. Renew. Energ. 37, 133–141 (2012)CrossRef
18.
Zurück zum Zitat Kouparitsas, C.E., Kartalis, C.N., Varelidis, P.C., Papaspyrides, C.D.: Recycling of the fibrous fraction of reinforced thermoset composites. Polym. Compos. 23, 682–689 (2002)CrossRef Kouparitsas, C.E., Kartalis, C.N., Varelidis, P.C., Papaspyrides, C.D.: Recycling of the fibrous fraction of reinforced thermoset composites. Polym. Compos. 23, 682–689 (2002)CrossRef
19.
Zurück zum Zitat Larsen, K.: Recycling wind turbine blades. Renew. Energy Focus. January/February, 9(7), 70–73 (2009) Larsen, K.: Recycling wind turbine blades. Renew. Energy Focus. January/February, 9(7), 70–73 (2009)
22.
Zurück zum Zitat Martínez, E., Jiménez, E., Blanco, J., Sanz, F.: LCA sensitivity analysis of a multi-megawatt wind turbine. Appl. Energy. 87, 2293–2303 (2010)CrossRef Martínez, E., Jiménez, E., Blanco, J., Sanz, F.: LCA sensitivity analysis of a multi-megawatt wind turbine. Appl. Energy. 87, 2293–2303 (2010)CrossRef
24.
Zurück zum Zitat Ortegon, K., Nies, L.F., Sutherland, J.W.: Preparing for end of service life of wind turbines. J. Clean Prod. 39, 191–199 (2013)CrossRef Ortegon, K., Nies, L.F., Sutherland, J.W.: Preparing for end of service life of wind turbines. J. Clean Prod. 39, 191–199 (2013)CrossRef
25.
Zurück zum Zitat Papadakis, N., Ramírez, C., Reynolds, N.: Designing composite wind turbine blades for disposal, recycling or reuse. In: Goodship, V. (ed.) Management, Recycling and Reuse of Waste Composites, pp. 443–457. Woodhead Publishing in Materials, Cambridge (2010)CrossRef Papadakis, N., Ramírez, C., Reynolds, N.: Designing composite wind turbine blades for disposal, recycling or reuse. In: Goodship, V. (ed.) Management, Recycling and Reuse of Waste Composites, pp. 443–457. Woodhead Publishing in Materials, Cambridge (2010)CrossRef
26.
Zurück zum Zitat Pickering, S.J., Kelly, R.M., Kennerley, J.R., Rudd, C.D., Fenwick, N.J.: Fluidized-bed process for the recovery of glass fibres from scrap thermoset composites. Compos. Sci. Technol. 60, 509–523 (2000)CrossRef Pickering, S.J., Kelly, R.M., Kennerley, J.R., Rudd, C.D., Fenwick, N.J.: Fluidized-bed process for the recovery of glass fibres from scrap thermoset composites. Compos. Sci. Technol. 60, 509–523 (2000)CrossRef
27.
Zurück zum Zitat Pickering, S.J.: Thermal methods for recycling waste composites. In: Goodship, V. (ed.) Management, Recycling and Reuse of Waste Composites, pp. 74–99. Woodhead Publishing, Cambridge (2010) Pickering, S.J.: Thermal methods for recycling waste composites. In: Goodship, V. (ed.) Management, Recycling and Reuse of Waste Composites, pp. 74–99. Woodhead Publishing, Cambridge (2010)
28.
Zurück zum Zitat Pimenta, S., Pinho, S.T.: Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag. 31, 378–392 (2011)CrossRef Pimenta, S., Pinho, S.T.: Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag. 31, 378–392 (2011)CrossRef
29.
Zurück zum Zitat Skrainka, M.S.: Analysis of the environmental impact on remanufacturing wind turbines. Thesis, Rochester Institute of Technology (2012) Skrainka, M.S.: Analysis of the environmental impact on remanufacturing wind turbines. Thesis, Rochester Institute of Technology (2012)
30.
Zurück zum Zitat Stewart, R.: Wind turbine blade production-new products keep pace as scale increases. Reinf. Plast. 24 Jan (2012) Stewart, R.: Wind turbine blade production-new products keep pace as scale increases. Reinf. Plast. 24 Jan (2012)
31.
Zurück zum Zitat Tarverdi, K.: Improving the mechanical recycling and reuse of mixed plastics and polymer composites. In: Goodship, V. (ed.) Management, Recycling and Reuse of Waste Composites, pp. 281–302. Woodhead Publishing in Materials, Cambridge (2010)CrossRef Tarverdi, K.: Improving the mechanical recycling and reuse of mixed plastics and polymer composites. In: Goodship, V. (ed.) Management, Recycling and Reuse of Waste Composites, pp. 281–302. Woodhead Publishing in Materials, Cambridge (2010)CrossRef
32.
Zurück zum Zitat Vestas website: Vestas life cycle assessment (LCA). Taking a long term view (2011). Accessed 12 May 2011 Vestas website: Vestas life cycle assessment (LCA). Taking a long term view (2011). Accessed 12 May 2011
34.
Zurück zum Zitat Willett, H.G.: Characterization of composites for wind turbine blades. Reinf. Plast. 56, 34–36 (2012)CrossRef Willett, H.G.: Characterization of composites for wind turbine blades. Reinf. Plast. 56, 34–36 (2012)CrossRef
35.
Zurück zum Zitat Yang, Y., Boom, R., Irion, B., van Heerden, D.-J., Kuiper, P., de Wit, H.: Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012)CrossRef Yang, Y., Boom, R., Irion, B., van Heerden, D.-J., Kuiper, P., de Wit, H.: Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012)CrossRef
Metadaten
Titel
Current and potential decommissioning scenarios for end-of-life composite wind blades
verfasst von
Nicholas Sakellariou
Publikationsdatum
04.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 4/2018
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-017-0245-9

Weitere Artikel der Ausgabe 4/2018

Energy Systems 4/2018 Zur Ausgabe