Skip to main content

2022 | OriginalPaper | Buchkapitel

12. Current Trends and Prospects in Advanced Manufacturing for Printed Electronics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Printed electronics will play a more and more important role in the electronics industry due to advantages in high-throughput production and customizability in terms of material support and system process. The printing of traces and interconnects, passive and active components such as resistors, capacitors, inductors, and application-specific electronic devices have been a growing focus of research in the area of additive manufacturing electronics. Adaptation of novel 3D-printing technologies and manufacturing methods are potentially transformative in flexible/stretchable/wearable electronics, wireless communications, efficient batteries, solid-state display technologies, and so on. Other than printing new and reactive functional electronic materials, the functionalization of the printing substrates with unusual geometries apart from the conventional planar circuit boards will be a challenge. Building the substrate, printing the conductive tracks, pick-and-placing or embedding the electronic components, and interconnecting them are fundamental fabrication protocols of 2D- and 3D-printing systems, which should be adopted for a more integrated fabrication system. Moreover, adaptive 4D-printed systems have been developed with highly versatile multidisciplinary applications, including medicine, in the form of assisted soft robots, smart textiles as wearable electronics, and other industries such as agriculture and microfluidics. The adaptive 4D-printed systems incorporated synergic integration of three-dimensional (3D)-printed sensors into 4D-printing and control units, which could be assembled and programmed to transform their shapes based on the assigned tasks and environmental stimuli. This chapter gives a brief review on perspectives of various 2D-, 3D-, and 4D-printing methods, and describes the state-of-the-art in printed electronics and their future growth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams J, Duoss EB, Malkowski T, Motala M, Ahn B, Nuzzo R, Bernhard J, Lewis J (2011) Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater 23:1335–1340CrossRef Adams J, Duoss EB, Malkowski T, Motala M, Ahn B, Nuzzo R, Bernhard J, Lewis J (2011) Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater 23:1335–1340CrossRef
Zurück zum Zitat Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world? Atlantic Council, Strategic Foresight Report, 2011 Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world? Atlantic Council, Strategic Foresight Report, 2011
Zurück zum Zitat Choi J-H, Wang H, Oh J, Paik T, Jo P, Sung J, Ye X, Zhao T, Murray DBT, Kagan C (2016) Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352(6282):205–208CrossRef Choi J-H, Wang H, Oh J, Paik T, Jo P, Sung J, Ye X, Zhao T, Murray DBT, Kagan C (2016) Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352(6282):205–208CrossRef
Zurück zum Zitat Espera AH Jr, Dizon JRC, Chen Q, Advincula RC (2019) 3D-printing and advanced manufacturing for electronics. Progr Addit Manuf 4:245–267CrossRef Espera AH Jr, Dizon JRC, Chen Q, Advincula RC (2019) 3D-printing and advanced manufacturing for electronics. Progr Addit Manuf 4:245–267CrossRef
Zurück zum Zitat Gaikwad A, Whiting G, Steingart D, Arias A (2011) Highly flexible printed alkaline batteries based on mesh embedded electrodes. Adv Mater 23:3251CrossRef Gaikwad A, Whiting G, Steingart D, Arias A (2011) Highly flexible printed alkaline batteries based on mesh embedded electrodes. Adv Mater 23:3251CrossRef
Zurück zum Zitat Hoerber J, Glasschroeder J, Pfeffer M, Schilp J, Zaeh M, Franke J (2014) Approaches for additive manufacturing of 3D electronic applications. Proc CIRP 17:806–811CrossRef Hoerber J, Glasschroeder J, Pfeffer M, Schilp J, Zaeh M, Franke J (2014) Approaches for additive manufacturing of 3D electronic applications. Proc CIRP 17:806–811CrossRef
Zurück zum Zitat Kunnari E, Valkama J, Keskinen M, Mansikkamäki P (2009) Environmental evaluation of new technology: printed electronics case study. J Clean Prod 2009(17):791–799CrossRef Kunnari E, Valkama J, Keskinen M, Mansikkamäki P (2009) Environmental evaluation of new technology: printed electronics case study. J Clean Prod 2009(17):791–799CrossRef
Zurück zum Zitat Lewis J, Ahn B (2015) Three-dimensional printed electronics. Nature 518:42–43CrossRef Lewis J, Ahn B (2015) Three-dimensional printed electronics. Nature 518:42–43CrossRef
Zurück zum Zitat MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353:aaf2093CrossRef MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353:aaf2093CrossRef
Zurück zum Zitat Macdonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker R (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242CrossRef Macdonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker R (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242CrossRef
Zurück zum Zitat Muth J, Vogt D, Trugby R, Menguc Y, Kolesky D, Wood R, Lewis J (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312CrossRef Muth J, Vogt D, Trugby R, Menguc Y, Kolesky D, Wood R, Lewis J (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312CrossRef
Zurück zum Zitat Océ D (2006) Printing, 10th edn. Océ Printing Systems GmbH, Poing Océ D (2006) Printing, 10th edn. Océ Printing Systems GmbH, Poing
Zurück zum Zitat Ready S, Endicott F, Whiting G, Ng T, Chow E, Lu J (2013) 3D printed electronics. In: NIP 29 and digital fabrication, pp 9–12 Ready S, Endicott F, Whiting G, Ng T, Chow E, Lu J (2013) 3D printed electronics. In: NIP 29 and digital fabrication, pp 9–12
Zurück zum Zitat Sun K, Wei T-S, Ahn B, Seo J, DIllon S, Lewis J (2013) 3D printing of interdigitated Li-Ion microbattery architecture. Adv Mater 25:4539–4543CrossRef Sun K, Wei T-S, Ahn B, Seo J, DIllon S, Lewis J (2013) 3D printing of interdigitated Li-Ion microbattery architecture. Adv Mater 25:4539–4543CrossRef
Zurück zum Zitat Wehner M, Truby R, Fitzgerald D, Mosadegh B, Whitesides G, Lewis J, Wood R (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455CrossRef Wehner M, Truby R, Fitzgerald D, Mosadegh B, Whitesides G, Lewis J, Wood R (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455CrossRef
Metadaten
Titel
Current Trends and Prospects in Advanced Manufacturing for Printed ElectronicsPrinted electronics
verfasst von
Colin Tong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_12