Skip to main content

2025 | OriginalPaper | Buchkapitel

Customer Churn Rate Prediction Using Machine Learning Techniques for E-Commerce Sector

verfasst von : Muskan Saxena, Nikita Aggarwal, Rekha Gupta

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The e-commerce industry is rapidly growing in competition. The primary challenge lies in retaining customers through quality service and reasonable pricing. Predictive customer churn techniques can identify potential losses, allowing for improved marketing strategies. Meeting high demand and enhancing loyalty necessitate tailored services and strategies. Nevertheless, e-commerce customer churn is intricate, characterized by nonlinear fluctuations and asymmetrical customer types. Imbalanced data further complicates the scenario. The study offers proactive methods and models for online market places to reduce customer churn effectively. Classification is done using techniques machine learning models. This research innovates the churn prediction by employing a unique ensemble of machine learning models. Its distinctive features include in-depth exploratory data analysis (EDA), systematic model comparison, and the novel application of XGBoost as a unifying force. This approach sets the study apart, offering a comprehensive and advanced methodology for predicting churn rate of customers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu, X. J., & Meng, S. S. (2017). Research on e-commerce customer churn prediction based on customer segmentation and Ada-Boost. Industrial Engineering, 20(02), 99–107. Wu, X. J., & Meng, S. S. (2017). Research on e-commerce customer churn prediction based on customer segmentation and Ada-Boost. Industrial Engineering, 20(02), 99–107.
2.
Zurück zum Zitat Lu, N., Liu, X. W., & Lee, L. (2018). Research on customer value segmentation of online shop based on RFM. Computer Knowledge and Technology, 14(18), 275–276, 284. Lu, N., Liu, X. W., & Lee, L. (2018). Research on customer value segmentation of online shop based on RFM. Computer Knowledge and Technology, 14(18), 275–276, 284.
3.
Zurück zum Zitat Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: Analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7, 60134–60149.CrossRef Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: Analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7, 60134–60149.CrossRef
4.
Zurück zum Zitat Dhote, S., Vichoray, C., Pais, R., Baskar, S., & Shakeel, P. M. (2020). Hybrid geometric sampling and AdaBoost based deep learning approach for data imbalance in e-commerce. Electronic Commerce Research, 20(2), 259–274.CrossRef Dhote, S., Vichoray, C., Pais, R., Baskar, S., & Shakeel, P. M. (2020). Hybrid geometric sampling and AdaBoost based deep learning approach for data imbalance in e-commerce. Electronic Commerce Research, 20(2), 259–274.CrossRef
6.
Zurück zum Zitat Yu, X., Guo, S., Guo, J., & Huang, X. (2011). An extended support vector machine forecasting framework for customer churn in e-commerce. Expert Systems with Applications, 38(3), 1425–1430.CrossRef Yu, X., Guo, S., Guo, J., & Huang, X. (2011). An extended support vector machine forecasting framework for customer churn in e-commerce. Expert Systems with Applications, 38(3), 1425–1430.CrossRef
7.
Zurück zum Zitat Olle, G. D. O., & Cai, S. (2014). A hybrid churn prediction model in mobile telecommunication industry. International Journal of e-Education, e-Business, e-Management and e-Learning, 4(1), 55. Olle, G. D. O., & Cai, S. (2014). A hybrid churn prediction model in mobile telecommunication industry. International Journal of e-Education, e-Business, e-Management and e-Learning, 4(1), 55.
8.
Zurück zum Zitat Geetha, V., Punitha, A., Nandhini, A., Nandhini, T., Shakila, S., & Sushmitha, R. (2020). Customer churn prediction ın telecommunication ındustry using random forest classifier. In International conference on system, computation, automation and networking (ICSCAN) (pp. 1–5). IEEE. Geetha, V., Punitha, A., Nandhini, A., Nandhini, T., Shakila, S., & Sushmitha, R. (2020). Customer churn prediction ın telecommunication ındustry using random forest classifier. In International conference on system, computation, automation and networking (ICSCAN) (pp. 1–5). IEEE.
9.
Zurück zum Zitat Renjith, S. (2015). An integrated framework to recommend personalized retention actions to control B2C E-commerce customer churn. arXiv preprint arXiv:1511.06975 Renjith, S. (2015). An integrated framework to recommend personalized retention actions to control B2C E-commerce customer churn. arXiv preprint arXiv:​1511.​06975
10.
Zurück zum Zitat Wu, X., & Meng, S. (2016, June). E-commerce customer churn prediction based on improved SMOTE and AdaBoost. In 2016 13th International conference on service systems and service management (ICSSSM) (pp. 1–5). IEEE. Wu, X., & Meng, S. (2016, June). E-commerce customer churn prediction based on improved SMOTE and AdaBoost. In 2016 13th International conference on service systems and service management (ICSSSM) (pp. 1–5). IEEE.
11.
Zurück zum Zitat Gordini, N., & Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry. Industrial Marketing Management, 62, 100–107.CrossRef Gordini, N., & Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry. Industrial Marketing Management, 62, 100–107.CrossRef
12.
Zurück zum Zitat Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications–a holistic extension to the CRISP-DM model. Procedia CIRP, 79, 403–408.CrossRef Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications–a holistic extension to the CRISP-DM model. Procedia CIRP, 79, 403–408.CrossRef
14.
Zurück zum Zitat Zhang, D. (2015). Establishment and application of customer churn prediction model. Beijing Institute of Technology. Zhang, D. (2015). Establishment and application of customer churn prediction model. Beijing Institute of Technology.
15.
Zurück zum Zitat Zorn, S., Jarvis, W., & Bellman, S. (2010). Attitudinal perspectives for predicting churn. Journal of Research in Interactive Marketing, 4, 157–169.CrossRef Zorn, S., Jarvis, W., & Bellman, S. (2010). Attitudinal perspectives for predicting churn. Journal of Research in Interactive Marketing, 4, 157–169.CrossRef
17.
Zurück zum Zitat Feng, X., Wang, C., Liu, Y., Yang, Y., & An, H. G. (2018). Research on customer churn prediction based on comment emotional tendency and neural network. Journal of China Academy of Electronics Science, 13(03), 340–345. Feng, X., Wang, C., Liu, Y., Yang, Y., & An, H. G. (2018). Research on customer churn prediction based on comment emotional tendency and neural network. Journal of China Academy of Electronics Science, 13(03), 340–345.
18.
Zurück zum Zitat Ho, T. K. (1995). Random decisions forest. In Proceedings of 3rd International Conference On Document Analysis And Recognition (pp. 278–282). IEEE. Ho, T. K. (1995). Random decisions forest. In Proceedings of 3rd International Conference On Document Analysis And Recognition (pp. 278–282). IEEE.
19.
Zurück zum Zitat Shao, D. (2016). Analysis and prediction of insurance company’s customer loss based on BP neural network. Lanzhou University. Shao, D. (2016). Analysis and prediction of insurance company’s customer loss based on BP neural network. Lanzhou University.
20.
Zurück zum Zitat Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. (2021). Integrated churn prediction and customer segmentation framework for tel business. IEEE Access. Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. (2021). Integrated churn prediction and customer segmentation framework for tel business. IEEE Access.
21.
Zurück zum Zitat Matuszelański, K., & Kopczewska, K. (2022). Customer churn in retail e-commerce business: spatial and machine learning approach. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), 165–198.CrossRef Matuszelański, K., & Kopczewska, K. (2022). Customer churn in retail e-commerce business: spatial and machine learning approach. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), 165–198.CrossRef
Metadaten
Titel
Customer Churn Rate Prediction Using Machine Learning Techniques for E-Commerce Sector
verfasst von
Muskan Saxena
Nikita Aggarwal
Rekha Gupta
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_26