Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 4/2015

01.04.2015

Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel

verfasst von: C. W. Shao, F. Shi, X. W. Li

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cyclic deformation and damage behavior of a Ni-free high-nitrogen austenitic stainless steel with a composition of Fe-18Cr-18Mn-0.63N (weight pct) were studied, and the internal stress and effective stress were estimated by partitioning the hysteresis loop during cyclic straining at total strain amplitudes ranging from 3.0 × 10−3 to 1.0 × 10−2. It is found that immediate cyclic softening takes place at all strain amplitudes and subsequently a saturation or quasi-saturation state develops and occupies the main part of the whole fatigue life. The internal stress increases with increasing strain amplitude, while the variation of effective stress with strain amplitude is somewhat complicated. Such a phenomenon is discussed in terms of dislocation structures and the short-range ordering caused by the interaction between nitrogen atoms and substitutional atoms. The relationship of fatigue life vs plastic strain amplitude (N f−Δε pl/2) follows a bilinear Coffin–Manson rule, resulting from the variation in slip deformation mode with the applied strain amplitude. At the low strain amplitude, cracks initiate along slip bands, and planar slip dislocation configurations dominate the major characteristic of internal microstructures. At high strain amplitudes, intergranular (mostly along grain boundaries and few along twin boundaries) cracks are generally found, and the deformation microstructures are mainly composed of dislocation cells, stacking faults and a small amount of deformation twins, in addition to planar slip dislocation structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat P.J. Uggowitzer, R. Magdowski, and M.O. Speidel, ISIJ Int., 1996, vol. 36, pp. 901–908.CrossRef P.J. Uggowitzer, R. Magdowski, and M.O. Speidel, ISIJ Int., 1996, vol. 36, pp. 901–908.CrossRef
3.
Zurück zum Zitat F. Shi, X.W. Li, Y. Qi, and C.M. Liu, Key Eng. Mater., 2013, vols. 531–532, pp. 97–102. F. Shi, X.W. Li, Y. Qi, and C.M. Liu, Key Eng. Mater., 2013, vols. 531–532, pp. 97–102.
4.
Zurück zum Zitat F. Shi, X.W. Li, Y. Qi, and C.M. Liu, Steel Res. Int., 2013, vol. 84, pp. 1034–39. F. Shi, X.W. Li, Y. Qi, and C.M. Liu, Steel Res. Int., 2013, vol. 84, pp. 1034–39.
5.
Zurück zum Zitat D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada, Mater. Trans., 2002, vol. 43, pp. 3100–04.CrossRef D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada, Mater. Trans., 2002, vol. 43, pp. 3100–04.CrossRef
6.
Zurück zum Zitat C.W. Shao, F. Shi, W. W. Guo, and X.W. Li, Mater. Trans., 2014, vol. 56, pp. 46–53.CrossRef C.W. Shao, F. Shi, W. W. Guo, and X.W. Li, Mater. Trans., 2014, vol. 56, pp. 46–53.CrossRef
7.
Zurück zum Zitat N. Maruyama, S. Hiromoto, E. Akiyama, and M. Nakamura, Sci. Technol. Adv. Mater., 2013, vol. 14, p. 025002.CrossRef N. Maruyama, S. Hiromoto, E. Akiyama, and M. Nakamura, Sci. Technol. Adv. Mater., 2013, vol. 14, p. 025002.CrossRef
8.
Zurück zum Zitat M. Sumita, T. Hanawa, and S.H. Teoh, Mater. Sci. Eng. C, 2004, vol. 24, pp. 753–60.CrossRef M. Sumita, T. Hanawa, and S.H. Teoh, Mater. Sci. Eng. C, 2004, vol. 24, pp. 753–60.CrossRef
9.
Zurück zum Zitat D. Kuroda, T. Hanawa, T. Hibaru, S. Kuroda, and M. Kobayashi, Mater. Trans., 2003, vol. 44, pp. 1363–69.CrossRef D. Kuroda, T. Hanawa, T. Hibaru, S. Kuroda, and M. Kobayashi, Mater. Trans., 2003, vol. 44, pp. 1363–69.CrossRef
10.
Zurück zum Zitat M. Sagara, H. Uno, Y. Katada, and T. Kodama, J. Iron Steel Inst. Jpn., 2002, vol. 88, pp. 672–77. M. Sagara, H. Uno, Y. Katada, and T. Kodama, J. Iron Steel Inst. Jpn., 2002, vol. 88, pp. 672–77.
11.
Zurück zum Zitat K. L. Chao, H. Y. Liao, J. J. Shyue, and S. S. Lian, Metall. Mater. Trans. B, 2014, vol. 45B, pp. 381–91.CrossRef K. L. Chao, H. Y. Liao, J. J. Shyue, and S. S. Lian, Metall. Mater. Trans. B, 2014, vol. 45B, pp. 381–91.CrossRef
12.
Zurück zum Zitat N. Maruyama, M. Sanbe, Y. Katada, and K. Kanazawa, Mater. Trans., 2009, vol. 50, pp. 2615–22.CrossRef N. Maruyama, M. Sanbe, Y. Katada, and K. Kanazawa, Mater. Trans., 2009, vol. 50, pp. 2615–22.CrossRef
13.
Zurück zum Zitat A.H. Cottrell: Dislocation and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953. A.H. Cottrell: Dislocation and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.
14.
Zurück zum Zitat M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, and E. Mazza, Int. J. Plasticity, 2013, vol. 47, pp. 143–64.CrossRef M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, and E. Mazza, Int. J. Plasticity, 2013, vol. 47, pp. 143–64.CrossRef
15.
Zurück zum Zitat M.S. Pham and S.R. Holdsworth, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 738–51.CrossRef M.S. Pham and S.R. Holdsworth, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 738–51.CrossRef
16.
Zurück zum Zitat J. Polák, F. Fardoun, and S. Degallaix, Mater. Sci. Eng. A, 1996, vol. 215, pp. 104–12.CrossRef J. Polák, F. Fardoun, and S. Degallaix, Mater. Sci. Eng. A, 1996, vol. 215, pp. 104–12.CrossRef
17.
Zurück zum Zitat D. Kuhlmann-Wilsdorf and C. Laird, Mater. Sci. Eng., 1979, vol. 37, pp. 111–20.CrossRef D. Kuhlmann-Wilsdorf and C. Laird, Mater. Sci. Eng., 1979, vol. 37, pp. 111–20.CrossRef
18.
Zurück zum Zitat J.I. Dickson, J. Boutin, and L. Handfield, Mater. Sci. Eng., 1984, vol. 64, pp. L7–L11.CrossRef J.I. Dickson, J. Boutin, and L. Handfield, Mater. Sci. Eng., 1984, vol. 64, pp. L7–L11.CrossRef
19.
20.
Zurück zum Zitat B. Chang and Z. Zhang, Mater. Sci. Eng. A, 2012, vol. 556, pp. 625–32.CrossRef B. Chang and Z. Zhang, Mater. Sci. Eng. A, 2012, vol. 556, pp. 625–32.CrossRef
21.
Zurück zum Zitat M.L.G. Byrnes, M. Grujicic, and W.S. Owen, Acta Mater., 1987, vol. 35, pp. 1853–62.CrossRef M.L.G. Byrnes, M. Grujicic, and W.S. Owen, Acta Mater., 1987, vol. 35, pp. 1853–62.CrossRef
22.
Zurück zum Zitat J. Polák, F. Fardoun, and S. Degallaix, Mater. Sci. Eng. A, 2001, vol. 297, pp. 154–61.CrossRef J. Polák, F. Fardoun, and S. Degallaix, Mater. Sci. Eng. A, 2001, vol. 297, pp. 154–61.CrossRef
23.
Zurück zum Zitat M. Nyström, U. Lindstedt, B. Karlsson, and J.O. Nilsson, Mater. Sci. Technol., 1997, vol. 13, pp. 560–67.CrossRef M. Nyström, U. Lindstedt, B. Karlsson, and J.O. Nilsson, Mater. Sci. Technol., 1997, vol. 13, pp. 560–67.CrossRef
24.
Zurück zum Zitat J.B. Vogt, J. Mater. Process. Technol., 2001, vol. 117, pp. 364–69.CrossRef J.B. Vogt, J. Mater. Process. Technol., 2001, vol. 117, pp. 364–69.CrossRef
25.
Zurück zum Zitat Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang, Acta Mater., 2012, vol. 60, pp. 3113–27.CrossRef Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang, Acta Mater., 2012, vol. 60, pp. 3113–27.CrossRef
26.
Zurück zum Zitat P. Zhang, Z.J. Zhang, L.L. Li, and Z.F. Zhang, Scripta Mater., 2012, vol. 66, pp. 854–59.CrossRef P. Zhang, Z.J. Zhang, L.L. Li, and Z.F. Zhang, Scripta Mater., 2012, vol. 66, pp. 854–59.CrossRef
27.
Zurück zum Zitat L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, and Z.F. Zhang. Nat. Commun., 2013, vol. 5, p. 3536. L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, and Z.F. Zhang. Nat. Commun., 2013, vol. 5, p. 3536.
28.
Zurück zum Zitat X.W. Li, Z.G. Wang, Y.W. Zhang, S.X. Li, and Y. Umakoshi, Phys. Stat. Sol. (a), 2002, vol. 191, pp. 97–105.CrossRef X.W. Li, Z.G. Wang, Y.W. Zhang, S.X. Li, and Y. Umakoshi, Phys. Stat. Sol. (a), 2002, vol. 191, pp. 97–105.CrossRef
29.
Zurück zum Zitat X. W. Li, Y. Umakoshi, B. Gong, S.X. Li, and Z.G. Wang, Mater. Sci. Eng. A, 2002, vol. 333, pp. 51–59.CrossRef X. W. Li, Y. Umakoshi, B. Gong, S.X. Li, and Z.G. Wang, Mater. Sci. Eng. A, 2002, vol. 333, pp. 51–59.CrossRef
30.
Zurück zum Zitat B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater., 1992, vol. 40, pp. 205–19.CrossRef B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater., 1992, vol. 40, pp. 205–19.CrossRef
31.
Zurück zum Zitat J. Kratochvíl, M. Kružík, and R. Sedláček, Int. J. Eng. Sci., 2010, vol. 48, pp. 1401–12.CrossRef J. Kratochvíl, M. Kružík, and R. Sedláček, Int. J. Eng. Sci., 2010, vol. 48, pp. 1401–12.CrossRef
32.
Zurück zum Zitat T. Kruml and S. Degallaix, Acta Mater., 1997, vol. 45, pp. 5145–51.CrossRef T. Kruml and S. Degallaix, Acta Mater., 1997, vol. 45, pp. 5145–51.CrossRef
33.
Zurück zum Zitat K. Obrtlik, T. Kruml, and J. Polak, Mater. Sci. Eng. A, 1994, vol. 187, pp. 1–9.CrossRef K. Obrtlik, T. Kruml, and J. Polak, Mater. Sci. Eng. A, 1994, vol. 187, pp. 1–9.CrossRef
34.
Zurück zum Zitat W.Y. Maeng and M.H. Kim, J. Nucl. Mater., 2000, vol. 282, pp. 32–39.CrossRef W.Y. Maeng and M.H. Kim, J. Nucl. Mater., 2000, vol. 282, pp. 32–39.CrossRef
35.
Zurück zum Zitat V. Gavriljuk, Y. Petrov, and B. Shanina, Scripta Mater., 2006, vol. 55, pp. 537–40.CrossRef V. Gavriljuk, Y. Petrov, and B. Shanina, Scripta Mater., 2006, vol. 55, pp. 537–40.CrossRef
36.
Zurück zum Zitat X. W. Li, X. M. Wu, Z. G. Wang, and Y. Umakoshi, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 307–18.CrossRef X. W. Li, X. M. Wu, Z. G. Wang, and Y. Umakoshi, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 307–18.CrossRef
37.
Zurück zum Zitat X.W. Li, N. Peng, X.M. Wu, and Z.G. Wang, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3835–43.CrossRef X.W. Li, N. Peng, X.M. Wu, and Z.G. Wang, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3835–43.CrossRef
38.
Zurück zum Zitat K. Oda, N. Kondo, and K. Shibata, ISIJ Int., 1990, vol. 30, pp. 625–31.CrossRef K. Oda, N. Kondo, and K. Shibata, ISIJ Int., 1990, vol. 30, pp. 625–31.CrossRef
39.
Zurück zum Zitat S. Kalnaus and Y. Jiang, ASME J. Eng. Mater. Technol., 2008, vol. 130, p. 031013.CrossRef S. Kalnaus and Y. Jiang, ASME J. Eng. Mater. Technol., 2008, vol. 130, p. 031013.CrossRef
40.
Zurück zum Zitat V.G. Gavriljuk and H. Berns: High Nitrogen Steels: Structure, Properties, Manufacture, Applications, 1st ed., Springer Verlag Press, Berlin, 1999.CrossRef V.G. Gavriljuk and H. Berns: High Nitrogen Steels: Structure, Properties, Manufacture, Applications, 1st ed., Springer Verlag Press, Berlin, 1999.CrossRef
41.
Zurück zum Zitat G.V. Prasad Reddy, R. Sandhya, S. Sankaran, and M.D. Mathew: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5044–56. G.V. Prasad Reddy, R. Sandhya, S. Sankaran, and M.D. Mathew: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5044–56.
42.
Zurück zum Zitat V. Singh, M. Sundararaman, W. Chen, and R.P. Wahi, Metall. Trans. A, 1991, vol. 22A, pp. 499–506.CrossRef V. Singh, M. Sundararaman, W. Chen, and R.P. Wahi, Metall. Trans. A, 1991, vol. 22A, pp. 499–506.CrossRef
43.
Zurück zum Zitat V.S. Sarma, M. Sundararaman, and K.A. Padmanabhan, Mater. Sci. Technol., 1998, vol. 14, pp. 669–75.CrossRef V.S. Sarma, M. Sundararaman, and K.A. Padmanabhan, Mater. Sci. Technol., 1998, vol. 14, pp. 669–75.CrossRef
44.
Zurück zum Zitat I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Acta Mater., 2001, vol. 49, pp. 3919–33.CrossRef I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Acta Mater., 2001, vol. 49, pp. 3919–33.CrossRef
45.
Zurück zum Zitat J.B. Vogt, A. Messai, and J. Foct, Scripta Metall. Mater., 1994, vol. 31, pp. 549–54.CrossRef J.B. Vogt, A. Messai, and J. Foct, Scripta Metall. Mater., 1994, vol. 31, pp. 549–54.CrossRef
46.
Metadaten
Titel
Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel
verfasst von
C. W. Shao
F. Shi
X. W. Li
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 4/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-2769-8

Weitere Artikel der Ausgabe 4/2015

Metallurgical and Materials Transactions A 4/2015 Zur Ausgabe

Symposium: High Entropy Alloys – II

Foreword

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.