Skip to main content
Erschienen in: Wireless Networks 4/2020

26.08.2019

DABPR: a large-scale internet of things-based data aggregation back pressure routing for disaster management

verfasst von: Iraj Sadegh Amiri, J. Prakash, M. Balasaraswathi, V. Sivasankaran, T. V. P. Sundararajan, M. H. D. Nour Hindia, Valmik Tilwari, Kaharudin Dimyati, Ojukwu Henry

Erschienen in: Wireless Networks | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a data aggregation back pressure routing (DABPR) scheme, which aims to simultaneously aggregate overlapping routes for efficient data transmission and prolong the lifetime of the network. The DABPR routing algorithm is structured into five phases in which event data is sent from the event areas to the sink nodes. These include cluster-head selection, maximization of event detection reliability, data aggregation, scheduling, and route selection with multi attributes decision making metrics phases. The scheme performs data aggregation on redundant data at relay nodes in order to decrease both the size and rate of message exchanges to minimize communication overhead and energy consumption. The proposed scheme is assessed in terms of packet delivery, network lifetime, ratio, energy consumption, and throughput, and compared with two other well-known protocols, namely “information-fusion-based role assignment (InFRA)” and “data routing for in-network aggregation (DRINA)”, which intrinsically are cluster and tree-based routing schemes designed to improve data aggregation efficiency by maximizing the overlapping routes. Meticulous analysis of the simulated data showed that DABPR achieved overall superior proficiency and more reliable performance in all the evaluated performance metrics, above the others. The proposed DABPR routing scheme outperformed its counterparts in the average energy consumption metric by 64.78% and 51.41%, packet delivery ratio by 28.76% and 16.89% and network lifetime by 42.72% and 20.76% compared with InFRA and DRINA, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials,18, 1123–1152.CrossRef Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials,18, 1123–1152.CrossRef
2.
Zurück zum Zitat Amiri, I. S., Ariannejad, M., Jalil, M., Ali, J., & Yupapin, P. (2018). Modeling optical transmissivity of graphene grate in on-chip silicon photonic device. Results in Physics,9, 1044–1049.CrossRef Amiri, I. S., Ariannejad, M., Jalil, M., Ali, J., & Yupapin, P. (2018). Modeling optical transmissivity of graphene grate in on-chip silicon photonic device. Results in Physics,9, 1044–1049.CrossRef
3.
Zurück zum Zitat Ray, P. P., Mukherjee, M., & Shu, L. (2017). Internet of things for disaster management: state-of-the-art and prospects. IEEE Access,5, 18818–18835.CrossRef Ray, P. P., Mukherjee, M., & Shu, L. (2017). Internet of things for disaster management: state-of-the-art and prospects. IEEE Access,5, 18818–18835.CrossRef
4.
Zurück zum Zitat Ray, N. K., & Turuk, A. K. (2017). A framework for post-disaster communication using wireless ad hoc networks. Integration,58, 274–285.CrossRef Ray, N. K., & Turuk, A. K. (2017). A framework for post-disaster communication using wireless ad hoc networks. Integration,58, 274–285.CrossRef
5.
Zurück zum Zitat Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access,5, 3302–3312.CrossRef Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access,5, 3302–3312.CrossRef
6.
Zurück zum Zitat Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials,8, 48–63.CrossRef Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials,8, 48–63.CrossRef
7.
Zurück zum Zitat Jiang, H., Jin, S., & Wang, C. (2010). Parameter-based data aggregation for statistical information extraction in wireless sensor networks. IEEE Transactions on Vehicular Technology,59, 3992–4001.CrossRef Jiang, H., Jin, S., & Wang, C. (2010). Parameter-based data aggregation for statistical information extraction in wireless sensor networks. IEEE Transactions on Vehicular Technology,59, 3992–4001.CrossRef
9.
Zurück zum Zitat Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences,9, 1582.CrossRef Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences,9, 1582.CrossRef
10.
Zurück zum Zitat Ladas, A., Deepak, G. C., Pavlatos, N., & Politis, C. (2018). A selective multipath routing protocol for ubiquitous networks. Ad Hoc Networks,77, 95–107.CrossRef Ladas, A., Deepak, G. C., Pavlatos, N., & Politis, C. (2018). A selective multipath routing protocol for ubiquitous networks. Ad Hoc Networks,77, 95–107.CrossRef
11.
Zurück zum Zitat Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering,69, 628–641.CrossRef Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering,69, 628–641.CrossRef
12.
Zurück zum Zitat Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.CrossRef Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.CrossRef
13.
Zurück zum Zitat Barcelo, M., Correa, A., Llorca, J., Tulino, A. M., Vicario, J. L., & Morell, A. (2016). IoT-cloud service optimization in next generation smart environments. IEEE Journal on Selected Areas in Communications,34, 4077–4090.CrossRef Barcelo, M., Correa, A., Llorca, J., Tulino, A. M., Vicario, J. L., & Morell, A. (2016). IoT-cloud service optimization in next generation smart environments. IEEE Journal on Selected Areas in Communications,34, 4077–4090.CrossRef
14.
Zurück zum Zitat Udaiyakumar, R., Joseph, S., Sundararajan, T., Vigneswaran, D., Maheswar, R., & Amiri, I. S. (2018). Self clock-gating scheme for low power basic logic element architecture. Wireless Personal Communications,102, 3477–3488.CrossRef Udaiyakumar, R., Joseph, S., Sundararajan, T., Vigneswaran, D., Maheswar, R., & Amiri, I. S. (2018). Self clock-gating scheme for low power basic logic element architecture. Wireless Personal Communications,102, 3477–3488.CrossRef
15.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1, 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1, 660–670.CrossRef
16.
Zurück zum Zitat Dasgupta, K., Kalpakis, K., & Namjoshi, P. (2003). An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In IEEE Wireless Communications and Networking, WCNC 2003 (pp. 1948–1953). IEEE. Dasgupta, K., Kalpakis, K., & Namjoshi, P. (2003). An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In IEEE Wireless Communications and Networking, WCNC 2003 (pp. 1948–1953). IEEE.
17.
Zurück zum Zitat Zarei, B., Zeynali, M., & Nezhad, V. M. (2010). Novel cluster based routing protocol in wireless sensor networks. International Journal of Computer Science Issues (IJCSI),7, 32. Zarei, B., Zeynali, M., & Nezhad, V. M. (2010). Novel cluster based routing protocol in wireless sensor networks. International Journal of Computer Science Issues (IJCSI),7, 32.
18.
Zurück zum Zitat Rajeswari, K., & Neduncheliyan, S. (2017). Genetic algorithm based fault tolerant clustering in wireless sensor network. IET Communications,11, 1927–1932.CrossRef Rajeswari, K., & Neduncheliyan, S. (2017). Genetic algorithm based fault tolerant clustering in wireless sensor network. IET Communications,11, 1927–1932.CrossRef
19.
Zurück zum Zitat Engel, A., & Koch, A. (2016). Heterogeneous wireless sensor nodes that target the internet of things. IEEE Micro,36, 8–15.CrossRef Engel, A., & Koch, A. (2016). Heterogeneous wireless sensor nodes that target the internet of things. IEEE Micro,36, 8–15.CrossRef
20.
Zurück zum Zitat Li, J., Deshpande, A. & Khuller, S. (2010). On computing compression trees for data collection in wireless sensor networks. In Proceedings IEEE INFOCOM (pp. 1–9). IEEE. Li, J., Deshpande, A. & Khuller, S. (2010). On computing compression trees for data collection in wireless sensor networks. In Proceedings IEEE INFOCOM (pp. 1–9). IEEE.
21.
Zurück zum Zitat Krishnamachari, L., Estrin, D. & Wicker, S. (2002). The impact of data aggregation in wireless sensor networks. In Proceedings 22nd international conference on distributed computing systems workshops (pp. 575–578). Krishnamachari, L., Estrin, D. & Wicker, S. (2002). The impact of data aggregation in wireless sensor networks. In Proceedings 22nd international conference on distributed computing systems workshops (pp. 575–578).
22.
Zurück zum Zitat Lee, M. & Wong, V. W. S. (2005). An energy-aware spanning tree algorithm for data aggregation in wireless sensor networks, In PACRIM. 2005 IEEE pacific rim conference on communications, computers and signal processing (pp. 300–303). IEEE. Lee, M. & Wong, V. W. S. (2005). An energy-aware spanning tree algorithm for data aggregation in wireless sensor networks, In PACRIM. 2005 IEEE pacific rim conference on communications, computers and signal processing (pp. 300–303). IEEE.
23.
Zurück zum Zitat Eskandari, Z., Yaghmaee, M. H. & Mohajerzadeh, A. (2008). Energy efficient spanning tree for data aggregation in wireless sensor networks. In Proceedings of 17th international conference on computer communications and networks (pp. 1–5). IEEE. Eskandari, Z., Yaghmaee, M. H. & Mohajerzadeh, A. (2008). Energy efficient spanning tree for data aggregation in wireless sensor networks. In Proceedings of 17th international conference on computer communications and networks (pp. 1–5). IEEE.
24.
Zurück zum Zitat Cheng, C.-T., Leung, H., & Maupin, P. (2013). A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sensors Journal,13, 1622–1631.CrossRef Cheng, C.-T., Leung, H., & Maupin, P. (2013). A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sensors Journal,13, 1622–1631.CrossRef
25.
Zurück zum Zitat Cristescu, R., Beferull-Lozano, B., Vetterli, M., & Wattenhofer, R. (2006). Network correlated data gathering with explicit communication: NP-completeness and algorithms. IEEE/ACM Transactions on Networking (ToN),14, 41–54.CrossRef Cristescu, R., Beferull-Lozano, B., Vetterli, M., & Wattenhofer, R. (2006). Network correlated data gathering with explicit communication: NP-completeness and algorithms. IEEE/ACM Transactions on Networking (ToN),14, 41–54.CrossRef
26.
Zurück zum Zitat Nakamura, E. F., Oliveira, H. A. B. F. D., Pontello, L. F. & Loureiro, A. A. F. (2006). On demand role assignment for event-detection in sensor networks. In 11th IEEE symposium on computers and communications (ISCC’06), pp. 941–947. Nakamura, E. F., Oliveira, H. A. B. F. D., Pontello, L. F. & Loureiro, A. A. F. (2006). On demand role assignment for event-detection in sensor networks. In 11th IEEE symposium on computers and communications (ISCC’06), pp. 941–947.
27.
Zurück zum Zitat Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers,62, 676–689.MathSciNetCrossRef Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers,62, 676–689.MathSciNetCrossRef
28.
Zurück zum Zitat Yan, Y., Zhang, B., Zheng, J., & Ma, J. (2010). Core: a coding-aware opportunistic routing mechanism for wireless mesh networks [accepted from open call]. IEEE Wireless Communications,17, 96–103.CrossRef Yan, Y., Zhang, B., Zheng, J., & Ma, J. (2010). Core: a coding-aware opportunistic routing mechanism for wireless mesh networks [accepted from open call]. IEEE Wireless Communications,17, 96–103.CrossRef
29.
Zurück zum Zitat Cheng, H., & Jia, X. (2005). An energy efficient routing algorithm for wireless sensor networks. In Proceedings. 2005 international conference on wireless communications, networking and mobile computing (pp. 905–910). IEEE. Cheng, H., & Jia, X. (2005). An energy efficient routing algorithm for wireless sensor networks. In Proceedings. 2005 international conference on wireless communications, networking and mobile computing (pp. 905–910). IEEE.
30.
Zurück zum Zitat Bouabdallah, F., Bouabdallah, N., & Boutaba, R. (2013). Efficient reporting node selection-based MAC protocol for wireless sensor networks. Wireless Networks,19, 373–391.CrossRef Bouabdallah, F., Bouabdallah, N., & Boutaba, R. (2013). Efficient reporting node selection-based MAC protocol for wireless sensor networks. Wireless Networks,19, 373–391.CrossRef
31.
Zurück zum Zitat Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access,6, 77372–77387.CrossRef Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access,6, 77372–77387.CrossRef
32.
Zurück zum Zitat Li, X., Liu, W., Xie, M., Liu, A., Zhao, M., Xiong, N., et al. (2018). Differentiated data aggregation routing scheme for energy conserving and delay sensitive wireless sensor networks. Sensors,18, 2349.CrossRef Li, X., Liu, W., Xie, M., Liu, A., Zhao, M., Xiong, N., et al. (2018). Differentiated data aggregation routing scheme for energy conserving and delay sensitive wireless sensor networks. Sensors,18, 2349.CrossRef
33.
Zurück zum Zitat Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems,26, 35–44.CrossRef Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems,26, 35–44.CrossRef
34.
Zurück zum Zitat Luo, D., Zhu, X., Wu, X. & Chen, G. Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks, pp. 1566–1574. Luo, D., Zhu, X., Wu, X. & Chen, G. Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks, pp. 1566–1574.
35.
Zurück zum Zitat Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking (TON),21, 1722–1735.CrossRef Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking (TON),21, 1722–1735.CrossRef
36.
Zurück zum Zitat Zhou, F., Chen, Z., Guo, S., & Li, J. (2016). Maximizing lifetime of data-gathering trees with different aggregation modes in WSNs. IEEE Sensors Journal,16, 8167–8177.CrossRef Zhou, F., Chen, Z., Guo, S., & Li, J. (2016). Maximizing lifetime of data-gathering trees with different aggregation modes in WSNs. IEEE Sensors Journal,16, 8167–8177.CrossRef
37.
Zurück zum Zitat Sengupta, S., Rayanchu, S., & Banerjee, S. (2010). Network coding-aware routing in wireless networks. IEEE/ACM Transactions on Networking (TON),18, 1158–1170.CrossRef Sengupta, S., Rayanchu, S., & Banerjee, S. (2010). Network coding-aware routing in wireless networks. IEEE/ACM Transactions on Networking (TON),18, 1158–1170.CrossRef
38.
Zurück zum Zitat Le, J., Lui, J. C. S., & Chiu, D.-M. (2010). DCAR: Distributed coding-aware routing in wireless networks. IEEE Transactions on Mobile Computing,9, 596–608.CrossRef Le, J., Lui, J. C. S., & Chiu, D.-M. (2010). DCAR: Distributed coding-aware routing in wireless networks. IEEE Transactions on Mobile Computing,9, 596–608.CrossRef
39.
Zurück zum Zitat Kouhdaragh, V., Amiri, I. S., & Seyedi, S. (2017). Smart grid load balancing methods to make an efficient heterogeneous network by using the communication cost function. IET Networks,7, 95–102.CrossRef Kouhdaragh, V., Amiri, I. S., & Seyedi, S. (2017). Smart grid load balancing methods to make an efficient heterogeneous network by using the communication cost function. IET Networks,7, 95–102.CrossRef
40.
Zurück zum Zitat Ying, L., Shakkottai, S., Reddy, A., & Liu, S. (2011). On combining shortest-path and back-pressure routing over multihop wireless networks. IEEE/ACM Transactions on Networking (TON),19, 841–854.CrossRef Ying, L., Shakkottai, S., Reddy, A., & Liu, S. (2011). On combining shortest-path and back-pressure routing over multihop wireless networks. IEEE/ACM Transactions on Networking (TON),19, 841–854.CrossRef
41.
Zurück zum Zitat Sasirekha, S., & Swamynathan, S. (2017). Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network. Journal of Communications and Networks,19, 392–401.CrossRef Sasirekha, S., & Swamynathan, S. (2017). Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network. Journal of Communications and Networks,19, 392–401.CrossRef
42.
Zurück zum Zitat Udaiyakumar, R., Joseph, S., Sundararajan, T., Vigneswaran, D., Maheswar, R., & Amiri, I. S. (2018). Performance analysis in digital circuits for process corner variations, slew-rate and load capacitance. Wireless Personal Communications,103, 99–115.CrossRef Udaiyakumar, R., Joseph, S., Sundararajan, T., Vigneswaran, D., Maheswar, R., & Amiri, I. S. (2018). Performance analysis in digital circuits for process corner variations, slew-rate and load capacitance. Wireless Personal Communications,103, 99–115.CrossRef
43.
Zurück zum Zitat Biswas, P. K., Qi, H., & Xu, Y. (2008). Mobile-agent-based collaborative sensor fusion. Information Fusion,9, 399–411.CrossRef Biswas, P. K., Qi, H., & Xu, Y. (2008). Mobile-agent-based collaborative sensor fusion. Information Fusion,9, 399–411.CrossRef
44.
Zurück zum Zitat De Couto, D. S. J., Aguayo, D., Bicket, J., & Morris, R. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks,11, 419–434.CrossRef De Couto, D. S. J., Aguayo, D., Bicket, J., & Morris, R. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks,11, 419–434.CrossRef
45.
Zurück zum Zitat Tran, A. T., Mai, D. D., & Kim, M. K. (2015). Link quality estimation in static wireless networks with high traffic load. Journal of Communications and Networks,17, 370–383.CrossRef Tran, A. T., Mai, D. D., & Kim, M. K. (2015). Link quality estimation in static wireless networks with high traffic load. Journal of Communications and Networks,17, 370–383.CrossRef
46.
Zurück zum Zitat Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the levy-walk nature of human mobility. IEEE/ACM Transactions on Networking,19, 630–643.CrossRef Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the levy-walk nature of human mobility. IEEE/ACM Transactions on Networking,19, 630–643.CrossRef
47.
Zurück zum Zitat Huang, H., Yin, H., Min, G., Zhang, J., Wu, Y., & Zhang, X. (2018). Energy-aware dual-path geographic routing to bypass routing holes in wireless sensor networks. IEEE Transactions on Mobile Computing,17, 1339–1352.CrossRef Huang, H., Yin, H., Min, G., Zhang, J., Wu, Y., & Zhang, X. (2018). Energy-aware dual-path geographic routing to bypass routing holes in wireless sensor networks. IEEE Transactions on Mobile Computing,17, 1339–1352.CrossRef
Metadaten
Titel
DABPR: a large-scale internet of things-based data aggregation back pressure routing for disaster management
verfasst von
Iraj Sadegh Amiri
J. Prakash
M. Balasaraswathi
V. Sivasankaran
T. V. P. Sundararajan
M. H. D. Nour Hindia
Valmik Tilwari
Kaharudin Dimyati
Ojukwu Henry
Publikationsdatum
26.08.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02122-3

Weitere Artikel der Ausgabe 4/2020

Wireless Networks 4/2020 Zur Ausgabe

Neuer Inhalt