Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

07.03.2021

DAP\(^2\)CMH: Deep Adversarial Privacy-Preserving Cross-Modal Hashing

verfasst von: Lei Zhu, Jiayu Song, Zhan Yang, Wenti Huang, Chengyuan Zhang, Weiren Yu

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Privacy-preserving cross-modal retrieval is a significant problem in the area of multimedia analysis. As the amount of data is exploding, cross-modal data analysis and retrieval is often realized on cloud computing environment. Therefore, the privacy protection of large-scale cross-modal data has become a problem that can not be ignored. To further improve the accuracy and efficiency of privacy-preserving search, this paper proposes a novel cross-modal hashing scheme, named deep adversarial privacy-preserving cross-modal hashing (DAP\(^2\)CMH). This method consists of a deep cross-modal hashing model termed DACMH, and a secure index structure called CMH\(^2\)-Tree. The former is a combination of deep hashing and adversarial learning to capture intra-modal and inter-modal correlation. The latter is a hierarchical hashing index structure that can provide efficient data organization based on cross-modal hash codes. We conduct comprehensive experiments on three common used benchmarks. The results show that the proposed approach DAP\(^2\)CMH outperforms the state-of-the-arts.
Literatur
1.
Zurück zum Zitat Xu C, Sun J, Wang C (2020) A novel image encryption algorithm based on bit-plane matrix rotation and hyper chaotic systems. Multimedia Tools Appl 5573–5593 Xu C, Sun J, Wang C (2020) A novel image encryption algorithm based on bit-plane matrix rotation and hyper chaotic systems. Multimedia Tools Appl 5573–5593
2.
Zurück zum Zitat Cao D, Han N, Chen H, Wei X, He X (2020) Video-based recipe retrieval. Inf Sci 302–318 Cao D, Han N, Chen H, Wei X, He X (2020) Video-based recipe retrieval. Inf Sci 302–318
3.
Zurück zum Zitat Jiang B, Huang X, Yang C, Yuan J (2019) SLTFNet: a spatial and language-temporal tensor fusion network for video moment retrieval. Inf Process Manage 56(6) Jiang B, Huang X, Yang C, Yuan J (2019) SLTFNet: a spatial and language-temporal tensor fusion network for video moment retrieval. Inf Process Manage 56(6)
4.
Zurück zum Zitat Cao D, Chu J, Zhu N, Nie L (2020). Cross-modal recipe retrieval via parallel- and cross-attention networks learning. Knowl Based Syst Cao D, Chu J, Zhu N, Nie L (2020). Cross-modal recipe retrieval via parallel- and cross-attention networks learning. Knowl Based Syst
5.
Zurück zum Zitat Cao D, Yu Z, Zhang H, Fang J, Nie L, Tian Q (2019). Video-based cross-modal recipe retrieval. acm multimedia Cao D, Yu Z, Zhang H, Fang J, Nie L, Tian Q (2019). Video-based cross-modal recipe retrieval. acm multimedia
6.
Zurück zum Zitat Fang L, Liu Z, Song W (2019) Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci Remote Sens Lett 16(9):1412–1416 CrossRef Fang L, Liu Z, Song W (2019) Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci Remote Sens Lett 16(9):1412–1416 CrossRef
7.
Zurück zum Zitat Liu Y, Xin G, Xiao Y (2016) Robust image hashing using radon transform and invariant features. Radioengineering 25(3):556–564 CrossRef Liu Y, Xin G, Xiao Y (2016) Robust image hashing using radon transform and invariant features. Radioengineering 25(3):556–564 CrossRef
8.
Zurück zum Zitat Deng G, Xu C, Tu XH, Li T, Gao N (2018). Rapid image retrieval with binary hash codes based on deep learning. Third international workshop on pattern recognition Deng G, Xu C, Tu XH, Li T, Gao N (2018). Rapid image retrieval with binary hash codes based on deep learning. Third international workshop on pattern recognition
9.
Zurück zum Zitat Hanling Z, Caiqiong X, Guangzhi G (2009). Content based image hashing robust to geometric transformations. International symposium on electronic commerce and security Hanling Z, Caiqiong X, Guangzhi G (2009). Content based image hashing robust to geometric transformations. International symposium on electronic commerce and security
10.
Zurück zum Zitat Jiang B, Huang X, Yang C, Yuan J (2019). Cross-modal video moment retrieval with spatial and language-temporal attention. International conference on multimedia retrieval Jiang B, Huang X, Yang C, Yuan J (2019). Cross-modal video moment retrieval with spatial and language-temporal attention. International conference on multimedia retrieval
11.
Zurück zum Zitat Liu Y, Qin Z, Liao X, Wu J (2020). Cryptanalysis and enhancement of an image encryption scheme based on a 1-d coupled sine map. Nonlinear Dyn (1) Liu Y, Qin Z, Liao X, Wu J (2020). Cryptanalysis and enhancement of an image encryption scheme based on a 1-d coupled sine map. Nonlinear Dyn (1)
12.
Zurück zum Zitat Ouyang J, Liu Y, Shu H (2017) Robust hashing for image authentication using SIFT feature and quaternion Zernike moments. Multimedia Tools Appl 76(2):2609–2626 CrossRef Ouyang J, Liu Y, Shu H (2017) Robust hashing for image authentication using SIFT feature and quaternion Zernike moments. Multimedia Tools Appl 76(2):2609–2626 CrossRef
13.
Zurück zum Zitat Zhang H, Huang S (2008). A novel image authentication robust to geometric transformations. Congress on image and signal processing Zhang H, Huang S (2008). A novel image authentication robust to geometric transformations. Congress on image and signal processing
14.
Zurück zum Zitat Karthik K, Kashyap S (2013) Transparent hashing in the encrypted domain for privacy preserving image retrieval. SIViP 7(4):647–664 CrossRef Karthik K, Kashyap S (2013) Transparent hashing in the encrypted domain for privacy preserving image retrieval. SIViP 7(4):647–664 CrossRef
15.
Zurück zum Zitat Ferreira B, Rodrigues J, Leitao J, Domingos H. (2017). Practical privacy-preserving content-based retrieval in cloud image repositories. IEEE Trans Cloud Comput Ferreira B, Rodrigues J, Leitao J, Domingos H. (2017). Practical privacy-preserving content-based retrieval in cloud image repositories. IEEE Trans Cloud Comput
16.
Zurück zum Zitat Cheng B, Zhuo L, Bai Y, Peng Y, Zhang J (2014) Secure index construction for privacy-preserving large-scale image retrieval. In 2014 IEEE fourth international conference on big data and cloud computing (pp 116–120). IEEE Cheng B, Zhuo L, Bai Y, Peng Y, Zhang J (2014) Secure index construction for privacy-preserving large-scale image retrieval. In 2014 IEEE fourth international conference on big data and cloud computing (pp 116–120). IEEE
17.
Zurück zum Zitat Weng L, Amsaleg L, Morton A, Marchand-Maillet S (2014) A privacy-preserving framework for large-scale content-based information retrieval. IEEE Trans Inf Forensics Secur 10(1):152–167 CrossRef Weng L, Amsaleg L, Morton A, Marchand-Maillet S (2014) A privacy-preserving framework for large-scale content-based information retrieval. IEEE Trans Inf Forensics Secur 10(1):152–167 CrossRef
18.
Zurück zum Zitat Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608 CrossRef Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608 CrossRef
19.
Zurück zum Zitat Xu Y, Gong J, Xiong L, Xu Z, Wang J, Shi YQ (2017) A privacy-preserving content-based image retrieval method in cloud environment. J Vis Commun Image Represent 43:164–172 CrossRef Xu Y, Gong J, Xiong L, Xu Z, Wang J, Shi YQ (2017) A privacy-preserving content-based image retrieval method in cloud environment. J Vis Commun Image Represent 43:164–172 CrossRef
20.
Zurück zum Zitat Guo C, Jia J, Jie Y, Liu CZ, Choo KR (2020) Enabling secure cross-modal retrieval over encrypted heterogeneous IoT databases with collective matrix factorization. IEEE Internet Things J 1–1 Guo C, Jia J, Jie Y, Liu CZ, Choo KR (2020) Enabling secure cross-modal retrieval over encrypted heterogeneous IoT databases with collective matrix factorization. IEEE Internet Things J 1–1
21.
Zurück zum Zitat Yang Y, Wu F, Xu D, Zhuang Y, Chia LT (2010) Cross-media retrieval using query dependent search methods. Pattern Recognit 43(8):2927–2936 CrossRef Yang Y, Wu F, Xu D, Zhuang Y, Chia LT (2010) Cross-media retrieval using query dependent search methods. Pattern Recognit 43(8):2927–2936 CrossRef
22.
Zurück zum Zitat Jiang B, Huang X, Yang C, Yuan J (2019) Cross-modal video moment retrieval with spatial and language-temporal attention. In Proceedings of the 2019 on international conference on multimedia retrieval (pp 217–225) Jiang B, Huang X, Yang C, Yuan J (2019) Cross-modal video moment retrieval with spatial and language-temporal attention. In Proceedings of the 2019 on international conference on multimedia retrieval (pp 217–225)
24.
Zurück zum Zitat Rafailidis D, Manolopoulou S, Daras P (2013) A unified framework for multimodal retrieval. Pattern Recognit 46(12):3358–3370 CrossRef Rafailidis D, Manolopoulou S, Daras P (2013) A unified framework for multimodal retrieval. Pattern Recognit 46(12):3358–3370 CrossRef
25.
Zurück zum Zitat Zhang C, Chen R, Zhu L, Liu A, Lin Y, Huang F (2019) Hierarchical information quadtree: efficient spatial temporal image search for multimedia stream. Multimedia Tools Appl 78(21):30561–30583 CrossRef Zhang C, Chen R, Zhu L, Liu A, Lin Y, Huang F (2019) Hierarchical information quadtree: efficient spatial temporal image search for multimedia stream. Multimedia Tools Appl 78(21):30561–30583 CrossRef
26.
Zurück zum Zitat Atrey PK, Hossain MA, El Saddik A, Kankanhalli MS (2010) Multimodal fusion for multimedia analysis: a survey. Multimedia Syst 16(6):345–379 CrossRef Atrey PK, Hossain MA, El Saddik A, Kankanhalli MS (2010) Multimodal fusion for multimedia analysis: a survey. Multimedia Syst 16(6):345–379 CrossRef
27.
Zurück zum Zitat Liu Z, Li H, Zhou W, Zhao R, Tian Q (2014) Contextual hashing for large-scale image search. IEEE Trans Image Process 23(4):1606–1614 MathSciNetCrossRef Liu Z, Li H, Zhou W, Zhao R, Tian Q (2014) Contextual hashing for large-scale image search. IEEE Trans Image Process 23(4):1606–1614 MathSciNetCrossRef
28.
Zurück zum Zitat Zhang C, Zhang Y, Zhang W, Lin X (2016) Inverted linear quadtree: efficient top k spatial keyword search. IEEE Trans Knowl Data Eng 28(7):1706–1721 CrossRef Zhang C, Zhang Y, Zhang W, Lin X (2016) Inverted linear quadtree: efficient top k spatial keyword search. IEEE Trans Knowl Data Eng 28(7):1706–1721 CrossRef
29.
Zurück zum Zitat Ranjan V, Rasiwasia N, Jawahar CV (2015) Multi-label cross-modal retrieval. In Proceedings of the IEEE international conference on computer vision (pp 4094–4102) Ranjan V, Rasiwasia N, Jawahar CV (2015) Multi-label cross-modal retrieval. In Proceedings of the IEEE international conference on computer vision (pp 4094–4102)
30.
Zurück zum Zitat Xu X, Shen F, Yang Y, Shen HT, Li X (2017) Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans Image Process 26(5):2494–2507 MathSciNetCrossRef Xu X, Shen F, Yang Y, Shen HT, Li X (2017) Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans Image Process 26(5):2494–2507 MathSciNetCrossRef
31.
Zurück zum Zitat Rasiwasia N, Costa Pereira J, Coviello E, Doyle G, Lanckriet GR, Levy R, Vasconcelos N (2010) A new approach to cross-modal multimedia retrieval. In Proceedings of the 18th ACM international conference on Multimedia (pp 251–260) Rasiwasia N, Costa Pereira J, Coviello E, Doyle G, Lanckriet GR, Levy R, Vasconcelos N (2010) A new approach to cross-modal multimedia retrieval. In Proceedings of the 18th ACM international conference on Multimedia (pp 251–260)
32.
Zurück zum Zitat Wang K, He R, Wang L, Wang W, Tan T (2015) Joint feature selection and subspace learning for cross-modal retrieval. IEEE Trans Pattern Anal Mach Intell 38(10):2010–2023 CrossRef Wang K, He R, Wang L, Wang W, Tan T (2015) Joint feature selection and subspace learning for cross-modal retrieval. IEEE Trans Pattern Anal Mach Intell 38(10):2010–2023 CrossRef
33.
Zurück zum Zitat Wang B, Yang Y, Xu X, Hanjalic A, Shen HT (2017) Adversarial cross-modal retrieval. In Proceedings of the 25th ACM international conference on Multimedia (pp 154–162) Wang B, Yang Y, Xu X, Hanjalic A, Shen HT (2017) Adversarial cross-modal retrieval. In Proceedings of the 25th ACM international conference on Multimedia (pp 154–162)
34.
Zurück zum Zitat Zhu L, Long J, Zhang C, Yu W, Yuan X, Sun L (2019) An efficient approach for geo-multimedia cross-modal retrieval. IEEE Access 7:180571–180589 CrossRef Zhu L, Long J, Zhang C, Yu W, Yuan X, Sun L (2019) An efficient approach for geo-multimedia cross-modal retrieval. IEEE Access 7:180571–180589 CrossRef
35.
Zurück zum Zitat Wei Y, Zhao Y, Lu C, Wei S, Liu L, Zhu Z, Yan S (2016) Cross-modal retrieval with CNN visual features: a new baseline. IEEE Trans Cybern 47(2):449–460 Wei Y, Zhao Y, Lu C, Wei S, Liu L, Zhu Z, Yan S (2016) Cross-modal retrieval with CNN visual features: a new baseline. IEEE Trans Cybern 47(2):449–460
36.
Zurück zum Zitat Wu L, Wang Y, Shao L (2018) Cycle-consistent deep generative hashing for cross-modal retrieval. IEEE Trans Image Process 28(4):1602–1612 MathSciNetCrossRef Wu L, Wang Y, Shao L (2018) Cycle-consistent deep generative hashing for cross-modal retrieval. IEEE Trans Image Process 28(4):1602–1612 MathSciNetCrossRef
37.
Zurück zum Zitat Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664 CrossRef Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664 CrossRef
38.
Zurück zum Zitat Wang S, Lu J, Gu X, Weyori BA, Yang JY (2016) Unsupervised discriminant canonical correlation analysis based on spectral clustering. Neurocomputing 171:425–433 CrossRef Wang S, Lu J, Gu X, Weyori BA, Yang JY (2016) Unsupervised discriminant canonical correlation analysis based on spectral clustering. Neurocomputing 171:425–433 CrossRef
39.
Zurück zum Zitat Zu C, Zhang D (2016) Canonical sparse cross-view correlation analysis. Neurocomputing 191:263–272 CrossRef Zu C, Zhang D (2016) Canonical sparse cross-view correlation analysis. Neurocomputing 191:263–272 CrossRef
40.
Zurück zum Zitat Gong Y, Ke Q, Isard M, Lazebnik S (2014) A multi-view embedding space for modeling internet images, tags, and their semantics. Int J Comput Vision 106(2):210–233 CrossRef Gong Y, Ke Q, Isard M, Lazebnik S (2014) A multi-view embedding space for modeling internet images, tags, and their semantics. Int J Comput Vision 106(2):210–233 CrossRef
41.
Zurück zum Zitat Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: International conference on machine learning (pp 1247–1255) Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: International conference on machine learning (pp 1247–1255)
42.
Zurück zum Zitat He Y, Xiang S, Kang C, Wang J, Pan C (2016) Cross-modal retrieval via deep and bidirectional representation learning. IEEE Trans Multimedia 18(7):1363–1377 CrossRef He Y, Xiang S, Kang C, Wang J, Pan C (2016) Cross-modal retrieval via deep and bidirectional representation learning. IEEE Trans Multimedia 18(7):1363–1377 CrossRef
43.
Zurück zum Zitat Huang X, Peng Y, Yuan M (2018) Mhtn: modal-adversarial hybrid transfer network for cross-modal retrieval. IEEE Trans Cybern Huang X, Peng Y, Yuan M (2018) Mhtn: modal-adversarial hybrid transfer network for cross-modal retrieval. IEEE Trans Cybern
44.
Zurück zum Zitat Gu J, Cai J, Joty SR, Niu L, Wang G (2018) Look, imagine and match: improving textual-visual cross-modal retrieval with generative models. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 7181–7189) Gu J, Cai J, Joty SR, Niu L, Wang G (2018) Look, imagine and match: improving textual-visual cross-modal retrieval with generative models. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 7181–7189)
45.
Zurück zum Zitat Wen X, Han Z, Yin X, Liu Y (2019) Adversarial cross-modal retrieval via learning and transferring single-modal similarities. International conference on multimedia and expo, 2019, pp 478–483 Wen X, Han Z, Yin X, Liu Y (2019) Adversarial cross-modal retrieval via learning and transferring single-modal similarities. International conference on multimedia and expo, 2019, pp 478–483
46.
Zurück zum Zitat Shang F, Zhang H, Sun J, Nie L, Liu L (2020) Cross-modal dual subspace learning with adversarial network. Neural Netw Shang F, Zhang H, Sun J, Nie L, Liu L (2020) Cross-modal dual subspace learning with adversarial network. Neural Netw
47.
Zurück zum Zitat Chen H, Ding G, Liu X, Lin Z, Liu J, Han J (2020) IMRAM: iterative matching with recurrent attention memory for cross-modal image-text retrieval. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp 12655–12663) Chen H, Ding G, Liu X, Lin Z, Liu J, Han J (2020) IMRAM: iterative matching with recurrent attention memory for cross-modal image-text retrieval. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp 12655–12663)
48.
Zurück zum Zitat Yu J, Lu Y, Zhang W, Qin Z, Liu Y, Hu Y (2020) Learning cross-modal correlations by exploring inter-word semantics and stacked co-attention. Pattern Recognit Lett 130:189–198 CrossRef Yu J, Lu Y, Zhang W, Qin Z, Liu Y, Hu Y (2020) Learning cross-modal correlations by exploring inter-word semantics and stacked co-attention. Pattern Recognit Lett 130:189–198 CrossRef
49.
Zurück zum Zitat Wei X, Zhang T, Li Y, Zhang Y, Wu F (2020). Multi-modality cross attention network for image and sentence matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp 10941–10950) Wei X, Zhang T, Li Y, Zhang Y, Wu F (2020). Multi-modality cross attention network for image and sentence matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp 10941–10950)
50.
Zurück zum Zitat Wang K, Tang J, Wang N, Shao L (2016) Semantic Boosting Cross-Modal Hashing for efficient multimedia retrieval. Inf Sci 199–210 Wang K, Tang J, Wang N, Shao L (2016) Semantic Boosting Cross-Modal Hashing for efficient multimedia retrieval. Inf Sci 199–210
51.
Zurück zum Zitat Cao Y, Long M, Wang J, Yang Q, Yu PS (2016). Deep visual-semantic hashing for cross-modal retrieval. The 22nd ACM SIGKDD international conference. ACM Cao Y, Long M, Wang J, Yang Q, Yu PS (2016). Deep visual-semantic hashing for cross-modal retrieval. The 22nd ACM SIGKDD international conference. ACM
52.
Zurück zum Zitat Liong VE, Lu J, Tan Y, Zhou J (2017) Cross-modal deep variational hashing. International conference on computer vision Liong VE, Lu J, Tan Y, Zhou J (2017) Cross-modal deep variational hashing. International conference on computer vision
53.
Zurück zum Zitat Li K, Qi GJ, Ye J, Hua KA (2017) Linear subspace ranking hashing for cross-modal retrieval. IEEE Trans Pattern Anal Mach Intell PP(9), 1825–1838 Li K, Qi GJ, Ye J, Hua KA (2017) Linear subspace ranking hashing for cross-modal retrieval. IEEE Trans Pattern Anal Mach Intell PP(9), 1825–1838
54.
Zurück zum Zitat Yang E, Deng C, Liu W, Liu X, Tao D, Gao X (2017) Pairwise relationship guided deep hashing for cross-modal retrieval. In: Thirty-first AAAI conference on artificial intelligence Yang E, Deng C, Liu W, Liu X, Tao D, Gao X (2017) Pairwise relationship guided deep hashing for cross-modal retrieval. In: Thirty-first AAAI conference on artificial intelligence
55.
Zurück zum Zitat Zhang X, Lai H, Feng J (2018) Attention-aware deep adversarial hashing for cross-modal retrieval. In: Proceedings of the European conference on computer vision (ECCV) (pp 591–606) Zhang X, Lai H, Feng J (2018) Attention-aware deep adversarial hashing for cross-modal retrieval. In: Proceedings of the European conference on computer vision (ECCV) (pp 591–606)
56.
Zurück zum Zitat Zhong F, Chen Z, Min G (2018) Deep discrete cross-modal hashing for cross-media retrieval. Pattern Recognit 83:64–77 CrossRef Zhong F, Chen Z, Min G (2018) Deep discrete cross-modal hashing for cross-media retrieval. Pattern Recognit 83:64–77 CrossRef
57.
Zurück zum Zitat Chen ZD, Yu WJ, Li CX, Nie L, Xu XS (2018) Dual deep neural networks cross-modal hashing. In: Thirty-second AAAI conference on artificial intelligence Chen ZD, Yu WJ, Li CX, Nie L, Xu XS (2018) Dual deep neural networks cross-modal hashing. In: Thirty-second AAAI conference on artificial intelligence
58.
Zurück zum Zitat Zhang X, Zhou S, Feng J, Lai H, Li B, Pan Y, Yan S (2017) HashGAN: attention-aware deep adversarial hashing for cross modal retrieval. arXiv preprint arXiv:​1711.​09347 Zhang X, Zhou S, Feng J, Lai H, Li B, Pan Y, Yan S (2017) HashGAN: attention-aware deep adversarial hashing for cross modal retrieval. arXiv preprint arXiv:​1711.​09347
59.
Zurück zum Zitat Gu W, Gu X, Gu J, Li B, Xiong Z, Wang W (2019) Adversary guided asymmetric hashing for cross-modal retrieval. In: Proceedings of the 2019 on international conference on multimedia retrieval (pp 159–167) Gu W, Gu X, Gu J, Li B, Xiong Z, Wang W (2019) Adversary guided asymmetric hashing for cross-modal retrieval. In: Proceedings of the 2019 on international conference on multimedia retrieval (pp 159–167)
60.
Zurück zum Zitat Tu RC, Mao XL, Ma B, Hu Y, Yan T, Wei W, Huang H (2020) Deep cross-modal hashing with hashing functions and unified hash codes jointly learning. IEEE Trans Knowl Data Eng Tu RC, Mao XL, Ma B, Hu Y, Yan T, Wei W, Huang H (2020) Deep cross-modal hashing with hashing functions and unified hash codes jointly learning. IEEE Trans Knowl Data Eng
61.
Zurück zum Zitat Shen M, Cheng G, Zhu L, Du X, Hu J (2020) Content-based multi-source encrypted image retrieval in clouds with privacy preservation. Future Gener Comput Syst 109:621–632 CrossRef Shen M, Cheng G, Zhu L, Du X, Hu J (2020) Content-based multi-source encrypted image retrieval in clouds with privacy preservation. Future Gener Comput Syst 109:621–632 CrossRef
62.
Zurück zum Zitat Rahim N, Ahmad J, Muhammad K, Sangaiah AK, Baik SW (2018) Privacy-preserving image retrieval for mobile devices with deep features on the cloud. Comput Commun 127:75–85 CrossRef Rahim N, Ahmad J, Muhammad K, Sangaiah AK, Baik SW (2018) Privacy-preserving image retrieval for mobile devices with deep features on the cloud. Comput Commun 127:75–85 CrossRef
63.
Zurück zum Zitat Cheng SL, Wang LJ, Huang G, Du AY (2019) A privacy-preserving image retrieval scheme based secure kNN, DNA coding and deep hashing. Multimedia Tools Appl 1–23 Cheng SL, Wang LJ, Huang G, Du AY (2019) A privacy-preserving image retrieval scheme based secure kNN, DNA coding and deep hashing. Multimedia Tools Appl 1–23
64.
Zurück zum Zitat Jiang R, Lu R, Choo KKR (2018) Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data. Future Gener Comput Syst 78:392–401 CrossRef Jiang R, Lu R, Choo KKR (2018) Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data. Future Gener Comput Syst 78:392–401 CrossRef
65.
Zurück zum Zitat Razeghi B, Voloshynovskiy S (2018) Privacy-preserving outsourced media search using secure sparse ternary codes. ICASSP 2018—2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE Razeghi B, Voloshynovskiy S (2018) Privacy-preserving outsourced media search using secure sparse ternary codes. ICASSP 2018—2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE
66.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems (pp 2672–2680) Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems (pp 2672–2680)
67.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25(2) Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25(2)
68.
Zurück zum Zitat Pennington J, Socher R, Manning C (2014). Glove: global vectors for word representation. Conference on empirical methods in natural language processing Pennington J, Socher R, Manning C (2014). Glove: global vectors for word representation. Conference on empirical methods in natural language processing
69.
Zurück zum Zitat Kim Y (2014) Convolutional neural networks for sentence classification. Empir Methods Nat Lang Process Kim Y (2014) Convolutional neural networks for sentence classification. Empir Methods Nat Lang Process
70.
Zurück zum Zitat Deppisch U (1986) S-tree: a dynamic balanced signature index for office retrieval. international acm sigir conference on research and development in information retrieval Deppisch U (1986) S-tree: a dynamic balanced signature index for office retrieval. international acm sigir conference on research and development in information retrieval
71.
Zurück zum Zitat Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM international conference on image and video retrieval (pp 1–9) Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM international conference on image and video retrieval (pp 1–9)
72.
Zurück zum Zitat Escalante HJ, Hernández CA, Gonzalez JA, López-López A, Montes M, Morales EF, Grubinger M (2010) The segmented and annotated IAPR TC-12 benchmark. Comput Vis Image Understand 114(4):419–428 Escalante HJ, Hernández CA, Gonzalez JA, López-López A, Montes M, Morales EF, Grubinger M (2010) The segmented and annotated IAPR TC-12 benchmark. Comput Vis Image Understand 114(4):419–428
73.
Zurück zum Zitat Kumar S, Udupa R. (2011) Learning hash functions for cross-view similarity search. In: Twenty-second international joint conference on artificial intelligence Kumar S, Udupa R. (2011) Learning hash functions for cross-view similarity search. In: Twenty-second international joint conference on artificial intelligence
74.
Zurück zum Zitat Song J, Yang Y, Yang Y, Huang Z, Shen HT (2013) Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data (pp 785–796) Song J, Yang Y, Yang Y, Huang Z, Shen HT (2013) Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data (pp 785–796)
75.
Zurück zum Zitat Bronstein MM, Bronstein AM, Michel F, Paragios N (2010) Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: 2010 IEEE computer society conference on computer vision and pattern recognition (pp 3594–3601). IEEE Bronstein MM, Bronstein AM, Michel F, Paragios N (2010) Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: 2010 IEEE computer society conference on computer vision and pattern recognition (pp 3594–3601). IEEE
76.
Zurück zum Zitat Jiang QY, Li WJ (2017) Deep cross-modal hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 3232–3240) Jiang QY, Li WJ (2017) Deep cross-modal hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 3232–3240)
77.
Zurück zum Zitat Guo C, Jia J, Jie Y, Liu CZ, Choo KKR (2020) Enabling secure cross-modal retrieval over encrypted heterogeneous IoT databases with collective matrix factorization. IEEE Internet Things J 7(4):3104–3113 CrossRef Guo C, Jia J, Jie Y, Liu CZ, Choo KKR (2020) Enabling secure cross-modal retrieval over encrypted heterogeneous IoT databases with collective matrix factorization. IEEE Internet Things J 7(4):3104–3113 CrossRef
Metadaten
Titel
DAPCMH: Deep Adversarial Privacy-Preserving Cross-Modal Hashing
verfasst von
Lei Zhu
Jiayu Song
Zhan Yang
Wenti Huang
Chengyuan Zhang
Weiren Yu
Publikationsdatum
07.03.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10447-4

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe