Zum Inhalt

2025 | OriginalPaper | Buchkapitel

4. Das Manuskript von Leibniz aus dem Jahre 1676 über Infinitesimalrechnung

verfasst von : Peter Ullrich

Erschienen in: Integralrechnung frei nach Leibniz

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Das Manuskript von Gottfried Wilhelm Leibniz aus dem Jahr 1676, 'De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis', markiert einen Meilenstein in der Entwicklung der Infinitesimalrechnung. Leibniz, der sich zu dieser Zeit intensiv mit der Mathematik auseinandersetzte, behandelte in diesem umfangreichen Text nicht nur die Kreisquadratur, sondern entwickelte auch einen einheitlichen Ansatz zur Bestimmung von Flächeninhalten, die von Kegelschnitten und verwandten Kurven begrenzt werden. Zudem diskutierte er die Reihenentwicklung trigonometrischer Funktionen. Die historische Einordnung des Manuskripts zeigt, dass Leibniz durch seine diplomatischen Reisen und den Kontakt mit führenden Mathematikern seiner Zeit, wie Christiaan Huygens, tief in die aktuellen mathematischen Entwicklungen eingebunden war. Leibniz' Werk basiert auf der antiken Exhaustionsmethode, die bereits von Eudoxos und Euklid verwendet wurde, und integriert die arithmetische Bestimmung von Flächeninhalten, wie sie von Cavalieri, Roberval, Fermat und Wallis entwickelt wurde. Besonders bemerkenswert ist, dass Leibniz nicht nur die Ergebnisse der Flächenbestimmungen herleitete, sondern eine durchgehende Theorie der Integralrechnung lieferte. Diese Theorie stützt sich auf Vorüberlegungen zur Verwandlung von Dreiecken in Rechtecke und zur Abschätzung von Größen, was in der modernen Notation als Kern des Beweises für die Integralrechnung betrachtet wird. Leibniz' Manuskript blieb über drei Jahrhunderte unveröffentlicht und wurde erst in jüngster Zeit vollständig übersetzt und analysiert. Die detaillierte Untersuchung des Textes zeigt, dass Leibniz' Ansätze und Methoden auch heute noch von großer Relevanz sind und wichtige Einblicke in die Entwicklung der Mathematik bieten.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
Das Manuskript von Leibniz aus dem Jahre 1676 über Infinitesimalrechnung
verfasst von
Peter Ullrich
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-658-32077-5_4