Skip to main content

2013 | OriginalPaper | Buchkapitel

Data Assimilation in Brain Tumor Models

verfasst von : Joshua McDaniel, Eric Kostelich, Yang Kuang, John Nagy, Mark C. Preul, Nina Z. Moore, Nikolay L. Matirosyan

Erschienen in: Mathematical Methods and Models in Biomedicine

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A typical problem in applied mathematics and science is to estimate the future state of a dynamical system given its current state. One approach aimed at understanding one or more aspects determining the behavior of the system is mathematical modeling. This method frequently entails formulation of a set of equations, usually a system of partial or ordinary differential equations. Model parameters are then measured from experimental data or estimated from computer simulation or other methods, for example chi-squared parameter optimization as done in[26] or genetic algorithms which are frequently used in neuroscience [33]. Solutions to the model are then studied through mathematical analysis and numerical simulation usually for qualitative fit to the dynamical system of interest and any relative time-series data that is available. While mathematical modeling can provide meaningful insight, it may have limited predictive value due to idealized assumptions underlying the model, measurement error in experimental data and parameters, and chaotic behavior in the system. In this chapter we explore a different approach focused on optimal state estimation given a model and observational data of a biological process, while accounting for the relative uncertainty in both. The case explored here is the growth and spread of glioblastoma multiforme (GBM), a very aggressive form of glioma brain tumor which remains extremely difficult to manage clinically. The method employed is different from other approaches used in biology in that it is independent of the mathematical model and seeks an optimal initial condition. This is in contrast to other techniques such as those discussed in [21], which are model dependent and seek to find an optimal model parameterization given the observations and uncertainties in the system of interest.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The geopotential, Φ(z), is the work needed to raise a unit mass a vertical distance z from mean sea level and accounts for the variation of the earth’s gravitational field with latitude and elevation. The geopotential height is Φ(z) ∕ g 0, where \({g}_{0} = 9.80665\,{\mbox{ m\,s}}^{-2}\) is the global average of gravitational acceleration at mean sea level. For more details, see Chap.​ 1 of [12].
 
Literatur
1.
Zurück zum Zitat Amberger, V.R., Hensel, T., Ogata, T.N.,and Schwab, M.E.: Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res., 58, 149–158 (1998) Amberger, V.R., Hensel, T., Ogata, T.N.,and Schwab, M.E.: Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res., 58, 149–158 (1998)
3.
Zurück zum Zitat Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandian, G., and Ayache, N.: Realistic simulation of the 3d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging, 24, 1334–1346 (2005)CrossRef Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandian, G., and Ayache, N.: Realistic simulation of the 3d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging, 24, 1334–1346 (2005)CrossRef
4.
Zurück zum Zitat Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., and Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database NeuroImage, vol.5, no.4, part 2/4, S425, 1997 – Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, (1997) Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., and Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database NeuroImage, vol.5, no.4, part 2/4, S425, 1997 – Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, (1997)
5.
Zurück zum Zitat Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., and Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom IEEE Transactions on Medical Imaging, vol.17, No.3, p.463–468, (1998) Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., and Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom IEEE Transactions on Medical Imaging, vol.17, No.3, p.463–468, (1998)
6.
Zurück zum Zitat Demuth, T. and Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70, 217–228 (2004)CrossRef Demuth, T. and Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70, 217–228 (2004)CrossRef
7.
Zurück zum Zitat Eikenberry, S.E., Sankar, T., Preul, M.C., Kostelich, E.J., Thalhauser, C.J., and Kuang, Y.: Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical model. Cell Prolif. 42, 511–528 (2009)CrossRef Eikenberry, S.E., Sankar, T., Preul, M.C., Kostelich, E.J., Thalhauser, C.J., and Kuang, Y.: Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical model. Cell Prolif. 42, 511–528 (2009)CrossRef
8.
Zurück zum Zitat Evensen, G.:Data Assimilation: The Ensemble Kalman Filter, Springer (2006) Evensen, G.:Data Assimilation: The Ensemble Kalman Filter, Springer (2006)
9.
Zurück zum Zitat Gelb A. (ed): Appliede Optimal State Estimation. MIT Press, Cambridge, Ma., (1974) Gelb A. (ed): Appliede Optimal State Estimation. MIT Press, Cambridge, Ma., (1974)
10.
Zurück zum Zitat Grossman, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D.M., van Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C.: Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging, 15, 233–240 (2002)CrossRef Grossman, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D.M., van Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C.: Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging, 15, 233–240 (2002)CrossRef
11.
Zurück zum Zitat Hoffman, R.N, Ponte, R.M., Kostelich, E.J., Blumberg, A., Szunyogh, I., Vinogradov, S.V., and Henderson, J.M.: A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. J. Atmos. Ocean Tech., 25, 1638–1656 (2008) Hoffman, R.N, Ponte, R.M., Kostelich, E.J., Blumberg, A., Szunyogh, I., Vinogradov, S.V., and Henderson, J.M.: A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. J. Atmos. Ocean Tech., 25, 1638–1656 (2008)
12.
Zurück zum Zitat Horton, J.R.: An Introduction to dynamic meteorology. 4th ed. Amsterdam: Elsevier Academic Press (2004) Horton, J.R.: An Introduction to dynamic meteorology. 4th ed. Amsterdam: Elsevier Academic Press (2004)
13.
Zurück zum Zitat Hunt, B.R., Kostelich, E.J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126 (2007)MathSciNetMATHCrossRef Hunt, B.R., Kostelich, E.J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126 (2007)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D: J. Basic Eng., 82, 35–45 (1960)CrossRef Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D: J. Basic Eng., 82, 35–45 (1960)CrossRef
15.
Zurück zum Zitat Kalman, R.E., and Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D: J. Basic Eng., 83, 95–108 (1961)MathSciNetCrossRef Kalman, R.E., and Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D: J. Basic Eng., 83, 95–108 (1961)MathSciNetCrossRef
16.
Zurück zum Zitat Kalnay, E.: Atmospheric modeling, data assimilation, and Predictability. Cambridge University Press (2003) Kalnay, E.: Atmospheric modeling, data assimilation, and Predictability. Cambridge University Press (2003)
17.
Zurück zum Zitat Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. Visualization in Biomedical Computing (VBC’96). Lecture Notes in Computer Science, vol. 1131. Springer-Verlag, 135–140 (1996) Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. Visualization in Biomedical Computing (VBC’96). Lecture Notes in Computer Science, vol. 1131. Springer-Verlag, 135–140 (1996)
18.
Zurück zum Zitat Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods IEEE Transactions on Medical Imaging. 18(11), 1085–97 Nov (1999) Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods IEEE Transactions on Medical Imaging. 18(11), 1085–97 Nov (1999)
19.
Zurück zum Zitat Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–141 (1963)CrossRef Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–141 (1963)CrossRef
20.
Zurück zum Zitat Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333 (1965)CrossRef Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333 (1965)CrossRef
21.
Zurück zum Zitat Marino, S., Hogue, I.B., Ray, C.J., and Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178-196 (2008)CrossRef Marino, S., Hogue, I.B., Ray, C.J., and Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178-196 (2008)CrossRef
22.
Zurück zum Zitat Mohamed A., and Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan J.S., Gerig, G. (eds) 8th International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI). Springer, Palm Springs CA 400–408 (2005) Mohamed A., and Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan J.S., Gerig, G. (eds) 8th International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI). Springer, Palm Springs CA 400–408 (2005)
23.
Zurück zum Zitat Norden, A.D., and Wen, P.Y.: Glioma therapy in adults. Neurologist. 12, 279–292 (2006)CrossRef Norden, A.D., and Wen, P.Y.: Glioma therapy in adults. Neurologist. 12, 279–292 (2006)CrossRef
24.
Zurück zum Zitat Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., and Ott E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881 (2001)CrossRef Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., and Ott E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881 (2001)CrossRef
25.
Zurück zum Zitat Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., and Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J. Magn. Reson. Imaging, 14, 457–463 (2001)CrossRef Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., and Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J. Magn. Reson. Imaging, 14, 457–463 (2001)CrossRef
26.
Zurück zum Zitat Stein A.M., Demuth T., Mobley D., Berens M., and Sander L.: A mathematical model of glioblastoma tumor spheroid invasion in a 3D in vitro experiment. Biophys. J., 92, 356–365 (2007)CrossRef Stein A.M., Demuth T., Mobley D., Berens M., and Sander L.: A mathematical model of glioblastoma tumor spheroid invasion in a 3D in vitro experiment. Biophys. J., 92, 356–365 (2007)CrossRef
27.
Zurück zum Zitat Swanson, K.R., Alvord, Jr., E.C., and Murray, J.D.: A quantitative model of differential motility of gliomas in white and grey matter. Cell Prolif., 33, 317–329 (2000)CrossRef Swanson, K.R., Alvord, Jr., E.C., and Murray, J.D.: A quantitative model of differential motility of gliomas in white and grey matter. Cell Prolif., 33, 317–329 (2000)CrossRef
28.
Zurück zum Zitat Swanson, K.R., Bridge C., Murray, J.D., and Alvord, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10 (2003)CrossRef Swanson, K.R., Bridge C., Murray, J.D., and Alvord, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10 (2003)CrossRef
29.
Zurück zum Zitat Swanson, K.R., Rostomily, R.C., and Alvord, Jr., E.C.: A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Brit. J. Cancer, 98, 113–119 (2008)CrossRef Swanson, K.R., Rostomily, R.C., and Alvord, Jr., E.C.: A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Brit. J. Cancer, 98, 113–119 (2008)CrossRef
30.
Zurück zum Zitat Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., and Yorke, J.A.: A local ensemble Kalman filter data assimilation system for the NCEP global model. Tellus A, 60, 113–130 (2008) Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., and Yorke, J.A.: A local ensemble Kalman filter data assimilation system for the NCEP global model. Tellus A, 60, 113–130 (2008)
31.
Zurück zum Zitat Talairach, J. and Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988) Talairach, J. and Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)
32.
Zurück zum Zitat Tian, J.P., Friedman, A., Wang, J., and Chiocca, E.A.: Modeling the effects of resection, radiation and chemotherapy. J. Neurooncol, 91, 287–293 (2009)CrossRef Tian, J.P., Friedman, A., Wang, J., and Chiocca, E.A.: Modeling the effects of resection, radiation and chemotherapy. J. Neurooncol, 91, 287–293 (2009)CrossRef
33.
Zurück zum Zitat Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA (1999)MATH Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA (1999)MATH
34.
Zurück zum Zitat Wang, X., Bishop, C.H., and Julier, S.J.: Which is better, an ensemble of positive negative pairs or a centered spherical simplex ensemble?. Mon. Wea. Rev., 132, 1590–1605 (2004)CrossRef Wang, X., Bishop, C.H., and Julier, S.J.: Which is better, an ensemble of positive negative pairs or a centered spherical simplex ensemble?. Mon. Wea. Rev., 132, 1590–1605 (2004)CrossRef
Metadaten
Titel
Data Assimilation in Brain Tumor Models
verfasst von
Joshua McDaniel
Eric Kostelich
Yang Kuang
John Nagy
Mark C. Preul
Nina Z. Moore
Nikolay L. Matirosyan
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-4178-6_9