Skip to main content

2021 | OriginalPaper | Buchkapitel

Data-Driven Generative Design Integrated with Hybrid Additive Subtractive Manufacturing (HASM) for Smart Cities

verfasst von : Savas Dilibal, Serkan Nohut, Cengiz Kurtoglu, Josiah Owusu-Danquah

Erschienen in: Data-Driven Mining, Learning and Analytics for Secured Smart Cities

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generation of smart cities that considers environmental pollution, waste management, energy consumption and human activities has become more important in recent years since it was first introduced in the 1990s. In the smart cities, most of the structures, machines, processes and products will be redesigned in terms of technological developments linked to the fourth industrial revolution, Industry 4.0. This situation introduces the need of new design models that address extended significant parameters for manufacturing. Data-driven generative design methodology is an algorithmic design approach for developing state-of-the-art designs. Generative design may give the decision-makers more sustainable optimized project solutions with the iterative algorithmic process. Many parameters and constraints can be taken into consideration during the designing process, such as lightness, illumination, solar gain, durability, cost, sustainability, mass, factor of safety, mechanical stresses, resilience etc. In the generative design, an iterative process occurs via cyclic algorithm from ideation to evaluation to reveal possible potential design solutions. The increase in design freedom and complexity boosts the importance of new generation manufacturing methods. Hybrid additive subtractive manufacturing (HASM), a key component of Industry 4.0, offers tailored and personalized production capabilities by combining additive and subtractive processes in the same production unit. In today’s digital era, there is a growing need to create an integrated data-driven digital solution which consists of a multidisciplinary functional design integrated with hybrid additive subtractive manufacturing. Generative design integrated with hybrid additive subtractive manufacturing approach offers creating functional multi-criteria-based product combinations with sustainable organic mechanisms for engineering purpose. Alternatively, this approach provides dozens of different solutions for their studies considering multi-criteria, such as determining the convenient sunlight angles for walkways, computing optimum dimensions of smart structures, enabling transportation vehicles to pass underground or bridges etc. The main objective of this chapter is to introduce the importance of generative design and hybrid additive subtractive manufacturing for smart cities and present the critical advantages of a data-driven generative design concept algorithm integrated with hybrid additive subtractive manufacturing approach that will increase the speed of transition to smart cities. This chapter discusses a concept that integrates hybrid additive subtractive manufacturing with a data-driven generative design for the reliable, cost effective and sustainable design of components that can be used for establishment of secure smart cities. After conceptual explanations, the main aim and advantages of the concept are realized by a case study which is about the design of a drone chassis. A drone chassis is selected as a case study since drones will be used extensively for mainly security and logistics purposes in smart cities and design of drone chassis can be optimized by the proposed concept.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chakraborty C, Roy S, Sharma S et al (2020) Environmental sustainability for green societies: COVID-19 pandemic. Springer Nature. ISBN: 978-3-030-66489-3 Chakraborty C, Roy S, Sharma S et al (2020) Environmental sustainability for green societies: COVID-19 pandemic. Springer Nature. ISBN: 978-3-030-66489-3
2.
Zurück zum Zitat Sarkar S (2020) Smart equity: an Australian lens on the need to measure distributive justice. In: Biloria N (eds) Data-driven multivalence in the built environment. S.M.A.R.T. environments. Springer, Cham, pp 3–35 Sarkar S (2020) Smart equity: an Australian lens on the need to measure distributive justice. In: Biloria N (eds) Data-driven multivalence in the built environment. S.M.A.R.T. environments. Springer, Cham, pp 3–35
3.
Zurück zum Zitat Lalit G, Emeka C, Nasser N et al (2020) Anonymity preserving IoT-based COVID-19 and other infectious disease contact tracing model. IEEE Access 8:159402–159414CrossRef Lalit G, Emeka C, Nasser N et al (2020) Anonymity preserving IoT-based COVID-19 and other infectious disease contact tracing model. IEEE Access 8:159402–159414CrossRef
4.
Zurück zum Zitat Sanjukta B, Sourav B, Chinmay C (2019) IoT-based smart transportation system under real-time environment. In: Big data-enabled internet of things: challenges and opportunities, Chap 16. IET, pp 353–373. ISBN 978-1-78561-637-2 Sanjukta B, Sourav B, Chinmay C (2019) IoT-based smart transportation system under real-time environment. In: Big data-enabled internet of things: challenges and opportunities, Chap 16. IET, pp 353–373. ISBN 978-1-78561-637-2
5.
Zurück zum Zitat Sourav B, Chinmay C, Sumit C et al (2018) A survey on IoT based traffic control and prediction mechanism. In: Internet of things and big data analytics for smart generation, intelligent systems reference library, Chap 4, vol 154. Springer, pp 53–75. ISBN: 978-3-030-04203-5 Sourav B, Chinmay C, Sumit C et al (2018) A survey on IoT based traffic control and prediction mechanism. In: Internet of things and big data analytics for smart generation, intelligent systems reference library, Chap 4, vol 154. Springer, pp 53–75. ISBN: 978-3-030-04203-5
6.
Zurück zum Zitat Erkollar A, Oberer B (2018) Sustainable cities need smart transportation: the industry 4.0 transportation matrix. Sigma J Eng Nat Sci 9(4):359–370 Erkollar A, Oberer B (2018) Sustainable cities need smart transportation: the industry 4.0 transportation matrix. Sigma J Eng Nat Sci 9(4):359–370
7.
Zurück zum Zitat Jiang D (2020) The construction of a smart city information system based on the internet of things and cloud computing. Comput Commun 150:158–166CrossRef Jiang D (2020) The construction of a smart city information system based on the internet of things and cloud computing. Comput Commun 150:158–166CrossRef
8.
Zurück zum Zitat Lom M, Pribyl O, Svitek M (2016) Industry 4.0 as a part of smart cities. In: Smart cities symposium Prague, pp 1–6 Lom M, Pribyl O, Svitek M (2016) Industry 4.0 as a part of smart cities. In: Smart cities symposium Prague, pp 1–6
9.
Zurück zum Zitat Caetano I, Santos L, Leitão A (2020) Computational design in architecture: defining parametric, generative, and algorithmic design. Front Archit Res 9(2):287–300CrossRef Caetano I, Santos L, Leitão A (2020) Computational design in architecture: defining parametric, generative, and algorithmic design. Front Archit Res 9(2):287–300CrossRef
10.
Zurück zum Zitat Lindenmayer A (1975) Developmental algorithms for multicellular organisms: a survey of l-systems. J Theor Biol 54(1):3–22MathSciNetCrossRef Lindenmayer A (1975) Developmental algorithms for multicellular organisms: a survey of l-systems. J Theor Biol 54(1):3–22MathSciNetCrossRef
11.
Zurück zum Zitat Chang S, Saha N, Castro-Lacouture D, Yang PP (2019) Generative design and performance modeling for relationships between urban built forms, sky opening, solar radiation and energy. Energy Procedia 158:3994–4002CrossRef Chang S, Saha N, Castro-Lacouture D, Yang PP (2019) Generative design and performance modeling for relationships between urban built forms, sky opening, solar radiation and energy. Energy Procedia 158:3994–4002CrossRef
12.
Zurück zum Zitat Krish S (2011) A practical generative design method. Comput Aided Des 43(1):88–100CrossRef Krish S (2011) A practical generative design method. Comput Aided Des 43(1):88–100CrossRef
13.
Zurück zum Zitat Pereira T, Kennedy JV, Potgieter J (2019) A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf 30:11–18CrossRef Pereira T, Kennedy JV, Potgieter J (2019) A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf 30:11–18CrossRef
14.
Zurück zum Zitat Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manuf 11:545–554CrossRef Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manuf 11:545–554CrossRef
15.
Zurück zum Zitat Gibson I, Rosen D, Stucker B, Khorasani M (2021) Additive manufacturing technologies, 3rd edn. Springer, NatureCrossRef Gibson I, Rosen D, Stucker B, Khorasani M (2021) Additive manufacturing technologies, 3rd edn. Springer, NatureCrossRef
16.
Zurück zum Zitat Leary M (2020) Chapter 7—Generative design. In: Design for additive manufacturing, additive manufacturing materials and technologies, pp 203–222 Leary M (2020) Chapter 7—Generative design. In: Design for additive manufacturing, additive manufacturing materials and technologies, pp 203–222
17.
Zurück zum Zitat Buonamici F, Carfagni M, Furferi R et al (2021) Generative design: an explorative study. Comput Aided Des Appl 18(1):144–155CrossRef Buonamici F, Carfagni M, Furferi R et al (2021) Generative design: an explorative study. Comput Aided Des Appl 18(1):144–155CrossRef
19.
Zurück zum Zitat Wu J, Quian X, Wang MY (2019) Advances in generative design. Comput Aided Des 116:CrossRef Wu J, Quian X, Wang MY (2019) Advances in generative design. Comput Aided Des 116:CrossRef
20.
Zurück zum Zitat Khan S (2018) A generative design technique for exploring shape variations. Adv Eng Inform 38:712–724CrossRef Khan S (2018) A generative design technique for exploring shape variations. Adv Eng Inform 38:712–724CrossRef
21.
Zurück zum Zitat Gu N, Singh V, Merrick K (2010) A framework to integrate generative design techniques for enhancing design automation. In: Dave B et al (eds) New frontiers: Proceedings of the 15th international conference on computer-aided architectural design research in Asia CAADRIA, pp 127–136 Gu N, Singh V, Merrick K (2010) A framework to integrate generative design techniques for enhancing design automation. In: Dave B et al (eds) New frontiers: Proceedings of the 15th international conference on computer-aided architectural design research in Asia CAADRIA, pp 127–136
22.
Zurück zum Zitat Chapman CD, Saitou K, Jakiela MJ (1994) Genetic algorithms as an approach to configuration and topology design simulation for architecture and urban design. ASME J Mech Des 116:1005–1012CrossRef Chapman CD, Saitou K, Jakiela MJ (1994) Genetic algorithms as an approach to configuration and topology design simulation for architecture and urban design. ASME J Mech Des 116:1005–1012CrossRef
23.
Zurück zum Zitat Berquist J, Tessier A, O’Brien W et al (2017) An investigation of generative design for heating, ventilation, and air-conditioning. In: Turrin M et al (eds) Proceedings of the symposium on simulation for architecture and urban design, pp 155–163 Berquist J, Tessier A, O’Brien W et al (2017) An investigation of generative design for heating, ventilation, and air-conditioning. In: Turrin M et al (eds) Proceedings of the symposium on simulation for architecture and urban design, pp 155–163
25.
Zurück zum Zitat Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99CrossRef Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99CrossRef
26.
Zurück zum Zitat Attar R, Aish R, Stam J et al (2009) Physics-based generative design. In: CAAD futures conference, pp 231–244 Attar R, Aish R, Stam J et al (2009) Physics-based generative design. In: CAAD futures conference, pp 231–244
28.
Zurück zum Zitat Hiller JH (2012) Lipson automatic design and manufacture of soft robots. IEEE T Robot 28(2):457–466CrossRef Hiller JH (2012) Lipson automatic design and manufacture of soft robots. IEEE T Robot 28(2):457–466CrossRef
29.
Zurück zum Zitat Hornby GS, Lipson H, Pollack JB (2001) Evolution of generative design systems for modular physical robots. In: Proceedings 2001 ICRA. IEEE International conference on robotics and automation (Cat. No. 01CH37164), pp 4146–4151 Hornby GS, Lipson H, Pollack JB (2001) Evolution of generative design systems for modular physical robots. In: Proceedings 2001 ICRA. IEEE International conference on robotics and automation (Cat. No. 01CH37164), pp 4146–4151
30.
Zurück zum Zitat Mountstephens J, Teo J (2020) Progress and challenges in generative product design: a review of systems. Computers 9:80CrossRef Mountstephens J, Teo J (2020) Progress and challenges in generative product design: a review of systems. Computers 9:80CrossRef
31.
Zurück zum Zitat Hornby GS, Lohn JD, Linden DS (2011) Computer-automated evolution of an X-band antenna for NASA’s space technology 5 mission. Evol Comput 19(1):1–23CrossRef Hornby GS, Lohn JD, Linden DS (2011) Computer-automated evolution of an X-band antenna for NASA’s space technology 5 mission. Evol Comput 19(1):1–23CrossRef
32.
Zurück zum Zitat Mukkavaara J, Sandberg M (2020) Architectural design exploration using generative design: framework development and case study of a residential block. Buildings 10:0201CrossRef Mukkavaara J, Sandberg M (2020) Architectural design exploration using generative design: framework development and case study of a residential block. Buildings 10:0201CrossRef
33.
Zurück zum Zitat Nagy D, Lau D, Locke J (2017) Project discover: an application of generative design for architectural space planning. In: SIMAUD ‘17: Proceedings of the symposium on simulation for architecture and urban design, vol 7, pp 1–8 Nagy D, Lau D, Locke J (2017) Project discover: an application of generative design for architectural space planning. In: SIMAUD ‘17: Proceedings of the symposium on simulation for architecture and urban design, vol 7, pp 1–8
34.
Zurück zum Zitat D’mello SJ, Elsen SR, Aseer JR (2020) Generative design study of a remote-controlled plane’s wing ribs. AIP Conf Proc 2283:020046 D’mello SJ, Elsen SR, Aseer JR (2020) Generative design study of a remote-controlled plane’s wing ribs. AIP Conf Proc 2283:020046
35.
Zurück zum Zitat Briard T, Segonds F, Zamariola N (2020) G-DfAM: a methodological proposal of generative design for additive manufacturing in the automotive industry. Int J Interact Des Manuf 14:875–886CrossRef Briard T, Segonds F, Zamariola N (2020) G-DfAM: a methodological proposal of generative design for additive manufacturing in the automotive industry. Int J Interact Des Manuf 14:875–886CrossRef
36.
Zurück zum Zitat Jana G, Miroslav V, Ladislav G (2018) Surface interpolation and procedure used in the generative engineering design of surface-based automotive components. Int J Veh Des 77(4):211–226CrossRef Jana G, Miroslav V, Ladislav G (2018) Surface interpolation and procedure used in the generative engineering design of surface-based automotive components. Int J Veh Des 77(4):211–226CrossRef
37.
Zurück zum Zitat Thompson MK, Moroni G, Vaneker T et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann Manuf Technol 65:737–760CrossRef Thompson MK, Moroni G, Vaneker T et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann Manuf Technol 65:737–760CrossRef
38.
Zurück zum Zitat Peduk G, Dilibal S, Harrysson O, Ozbek S (2017) Comparison of the production processes of nickel-titanium shape memory alloy through additive manufacturing. In: International Symposium on 3D Printing (Additive Manufacturing), vol 2, no 1, pp 391–399 Peduk G, Dilibal S, Harrysson O, Ozbek S (2017) Comparison of the production processes of nickel-titanium shape memory alloy through additive manufacturing. In: International Symposium on 3D Printing (Additive Manufacturing), vol 2, no 1, pp 391–399
39.
Zurück zum Zitat Dilibal S, Sahin H, Çelik Y (2018) Experimental and numerical analysis on the bending response of the geometrically gradient soft robotics actuator. Arch Mech 70(5):391–404MATH Dilibal S, Sahin H, Çelik Y (2018) Experimental and numerical analysis on the bending response of the geometrically gradient soft robotics actuator. Arch Mech 70(5):391–404MATH
40.
Zurück zum Zitat Nohut S, Dilibal S, Sahin H (2018) Ceramic additive manufacturing via lithography. Ceram Ind Mag 22–25 Nohut S, Dilibal S, Sahin H (2018) Ceramic additive manufacturing via lithography. Ceram Ind Mag 22–25
44.
Zurück zum Zitat Dilibal S (2016) The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications. J Def Sci 15(2):1–23 Dilibal S (2016) The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications. J Def Sci 15(2):1–23
46.
Zurück zum Zitat Peduk G, Dilibal S, Harrysson O, Ozbek S (2019) Investigation of microstructural behavior of nickel-titanium alloy produced via additive manufacturing. In: 4th International congress on 3D printing (additive manufacturing) technologies and digital industry Peduk G, Dilibal S, Harrysson O, Ozbek S (2019) Investigation of microstructural behavior of nickel-titanium alloy produced via additive manufacturing. In: 4th International congress on 3D printing (additive manufacturing) technologies and digital industry
47.
Zurück zum Zitat Harun WSW, Kamariah MSIN, Muhamad N et al (2018) A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol 327:128–151CrossRef Harun WSW, Kamariah MSIN, Muhamad N et al (2018) A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol 327:128–151CrossRef
48.
Zurück zum Zitat Kerschbaumer M, Ernst G (2004) Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding. In: Proceedings of the 23rd international congress on applications of laser and electro-optics (ICALEO), San Francisco, CA, vol 97, pp 1710–1720 Kerschbaumer M, Ernst G (2004) Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding. In: Proceedings of the 23rd international congress on applications of laser and electro-optics (ICALEO), San Francisco, CA, vol 97, pp 1710–1720
49.
Zurück zum Zitat Akula S, Karuakaran KP, Amarnath C (2005) Statistical process design for hybrid adaptive layer manufacturing. Rapid Prototyp J 11(4):235–248CrossRef Akula S, Karuakaran KP, Amarnath C (2005) Statistical process design for hybrid adaptive layer manufacturing. Rapid Prototyp J 11(4):235–248CrossRef
50.
Zurück zum Zitat Du W, Bai Q, Zhang B (2016) A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manuf 5:1018–1030CrossRef Du W, Bai Q, Zhang B (2016) A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manuf 5:1018–1030CrossRef
51.
Zurück zum Zitat Altıparmak SC, Yardley VA, Shi Z et al (2021) Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int J Lightweight Mater Manuf 4:246–261 Altıparmak SC, Yardley VA, Shi Z et al (2021) Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int J Lightweight Mater Manuf 4:246–261
52.
Zurück zum Zitat Li L, Haghighi A, Yang Y (2018) A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J Manuf Process 33:150–160CrossRef Li L, Haghighi A, Yang Y (2018) A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J Manuf Process 33:150–160CrossRef
53.
Zurück zum Zitat Sealy MP, Madireddy G, Williams RE (2018) Hybrid processes in additive manufacturing. J Manuf Sci Eng 140(6):CrossRef Sealy MP, Madireddy G, Williams RE (2018) Hybrid processes in additive manufacturing. J Manuf Sci Eng 140(6):CrossRef
54.
Zurück zum Zitat Feldhausen T, Raghavan N, Saleeby K et al (2021) Mechanical properties and microstructure of 316L stainless steel produced by hybrid manufacturing. J Mater Process Tech 290:CrossRef Feldhausen T, Raghavan N, Saleeby K et al (2021) Mechanical properties and microstructure of 316L stainless steel produced by hybrid manufacturing. J Mater Process Tech 290:CrossRef
55.
Zurück zum Zitat Grzesik W (2018) Hybrid manufacturing of metallic parts integrated additive and subtractive processes. Mechanik 91(7):468–475 Grzesik W (2018) Hybrid manufacturing of metallic parts integrated additive and subtractive processes. Mechanik 91(7):468–475
57.
Zurück zum Zitat Dizon JRC, Espera AH, Chen Q et al (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67 Dizon JRC, Espera AH, Chen Q et al (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67
58.
Zurück zum Zitat Merklein M, Junker D, Schaub A et al (2016) hybrid additive manufacturing technologies—an analysis regarding potentials and applications. Phys Procedia 83:549–559CrossRef Merklein M, Junker D, Schaub A et al (2016) hybrid additive manufacturing technologies—an analysis regarding potentials and applications. Phys Procedia 83:549–559CrossRef
59.
Zurück zum Zitat Grzesik W (2018) Hybrid additive and subtractive manufacturing processes and systems: a review. J Mach Eng 18(4):5–24MathSciNetCrossRef Grzesik W (2018) Hybrid additive and subtractive manufacturing processes and systems: a review. J Mach Eng 18(4):5–24MathSciNetCrossRef
60.
Zurück zum Zitat Sossous G, Demoly F, Montavon G et al (2018) An additive manufacturing oriented design approach to mechanical assemblies. J Comput Des Eng 5:3–18 Sossous G, Demoly F, Montavon G et al (2018) An additive manufacturing oriented design approach to mechanical assemblies. J Comput Des Eng 5:3–18
61.
Zurück zum Zitat Segonds F (2018) Design by additive manufacturing: an application in aeronautics and defense. Virtual Phys Prototyp 13(4):237–245CrossRef Segonds F (2018) Design by additive manufacturing: an application in aeronautics and defense. Virtual Phys Prototyp 13(4):237–245CrossRef
62.
Zurück zum Zitat Zhang Y, Wang Z, Zhang Y et al (2020) Bio-inspired generative design for support structure generation and optimization in additive manufacturing (AM). CIRP Ann 69(1):117–120 Zhang Y, Wang Z, Zhang Y et al (2020) Bio-inspired generative design for support structure generation and optimization in additive manufacturing (AM). CIRP Ann 69(1):117–120
63.
Zurück zum Zitat Plocher J, Panesar A (2019) Review on design and structural optimization in additive manufacturing: towards next-generation lightweight structures. Mater Des 183:CrossRef Plocher J, Panesar A (2019) Review on design and structural optimization in additive manufacturing: towards next-generation lightweight structures. Mater Des 183:CrossRef
64.
Zurück zum Zitat Khan MA, Alvi BA, Safi A et al (2018) Drones for good in smart cities: a review. In: International conference on electrical, electronics, computers, communication, mechanical and computing (EECCMC) Khan MA, Alvi BA, Safi A et al (2018) Drones for good in smart cities: a review. In: International conference on electrical, electronics, computers, communication, mechanical and computing (EECCMC)
Metadaten
Titel
Data-Driven Generative Design Integrated with Hybrid Additive Subtractive Manufacturing (HASM) for Smart Cities
verfasst von
Savas Dilibal
Serkan Nohut
Cengiz Kurtoglu
Josiah Owusu-Danquah
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-72139-8_10