Skip to main content
Erschienen in: Wireless Networks 8/2019

08.08.2019

Data-driven handover optimization in small cell networks

verfasst von: Savita Kumari, Brahmjit Singh

Erschienen in: Wireless Networks | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the advent of 1G through 5G networks, telecommunication industry has gone through phenomenal transformation in the way we communicate, we work, and we socialize. In dense or ultra-dense mobile communication networks, the users are very frequently handed over to other cells making seamless mobility a challenging and complex problem. Therefore, robust connectivity in such networks becomes a very critical issue. In this paper, we present a data-driven handover optimization approach aiming to mitigate the mobility problems including handover delay, early handover, wrong selection of target cell and frequent handover. The proposal is based on collecting the information from the network and developing a model to determine the relationship between the features drawn from the collected dataset and key performance indicator (KPI) expressed as the weighted average of mobility problem ratios. Handover design parameters- time to trigger and handover margin are optimized to improve KPI. The KPI estimation drawn on time to trigger and hysteresis margin design parameters is estimated through neural network multilayer perception method. It is established through simulation results that the proposed approach yields significantly improved handover performance mitigating mobility problem in ultra-dense cellular networks to notable extent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef
2.
Zurück zum Zitat Kitagawa, K., Komine, T., Yamamoto, T., & Konishi, S. (2011). A handover optimization algorithm with mobility robustness for LTE systems. In 2011 IEEE 22nd international symposium on personal, indoor and mobile radio communications (pp. 1647–1651), Toronto, ON, Canada. Kitagawa, K., Komine, T., Yamamoto, T., & Konishi, S. (2011). A handover optimization algorithm with mobility robustness for LTE systems. In 2011 IEEE 22nd international symposium on personal, indoor and mobile radio communications (pp. 1647–1651), Toronto, ON, Canada.
3.
Zurück zum Zitat Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2016). Handover decision for small cells: Algorithms, lessons learned and simulation study. Computer Networks, 100, 64–74.CrossRef Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2016). Handover decision for small cells: Algorithms, lessons learned and simulation study. Computer Networks, 100, 64–74.CrossRef
4.
Zurück zum Zitat Awada, A., Wegmann, B., Viering, I., & Klein, A. (2013). A SON-based algorithm for the optimization of inter-RAT handover parameters. IEEE Transactions on Vehicular Technology, 62(5), 1906–1923.CrossRef Awada, A., Wegmann, B., Viering, I., & Klein, A. (2013). A SON-based algorithm for the optimization of inter-RAT handover parameters. IEEE Transactions on Vehicular Technology, 62(5), 1906–1923.CrossRef
5.
Zurück zum Zitat Singh, B., Aggarwal, K. K., & Kumar, S. (2004). Hysteresis plus timer based handover initiation algorithm for microcellular systems. IETE Technical Review, 21(3), 181–189.CrossRef Singh, B., Aggarwal, K. K., & Kumar, S. (2004). Hysteresis plus timer based handover initiation algorithm for microcellular systems. IETE Technical Review, 21(3), 181–189.CrossRef
6.
Zurück zum Zitat Alsamhi, S. H., & Rajput, N. S. (2015). An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network. Wireless Personal Communications, 82(4), 2059–2073.CrossRef Alsamhi, S. H., & Rajput, N. S. (2015). An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network. Wireless Personal Communications, 82(4), 2059–2073.CrossRef
7.
Zurück zum Zitat Alotaibi, N. M., & Alwakeel, S. S. (2015). A neural network based handover management strategy for heterogeneous networks. In 2015 IEEE 14th international conference on machine learning and applications (ICMLA) (pp. 1210–1214), Miami, FL, USA. Alotaibi, N. M., & Alwakeel, S. S. (2015). A neural network based handover management strategy for heterogeneous networks. In 2015 IEEE 14th international conference on machine learning and applications (ICMLA) (pp. 1210–1214), Miami, FL, USA.
8.
Zurück zum Zitat Jansen, T., Balan, I., Turk, J., Moerman, I., & Kurner, T. (2010). Handover parameter optimization in LTE self-organizing networks. In 2010 IEEE 72nd vehicular technology conference—Fall (pp. 1–5), Ottawa, ON, Canada. Jansen, T., Balan, I., Turk, J., Moerman, I., & Kurner, T. (2010). Handover parameter optimization in LTE self-organizing networks. In 2010 IEEE 72nd vehicular technology conferenceFall (pp. 1–5), Ottawa, ON, Canada.
9.
Zurück zum Zitat Jansen, T., Balan, I., Stefanski, S., Moerman, I., & Kurner, T. (2011). Weighted performance based handover parameter optimization in LTE. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5), Budapest, Hungary. Jansen, T., Balan, I., Stefanski, S., Moerman, I., & Kurner, T. (2011). Weighted performance based handover parameter optimization in LTE. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5), Budapest, Hungary.
10.
Zurück zum Zitat Nan, W., Wenxiao, S., Shaoshuai, F., & Shuxiang, L. (2011). PSO-FNN-based vertical handoff decision algorithm in heterogeneous wireless networks. Procedia Environmental Sciences, 11, 55–62.CrossRef Nan, W., Wenxiao, S., Shaoshuai, F., & Shuxiang, L. (2011). PSO-FNN-based vertical handoff decision algorithm in heterogeneous wireless networks. Procedia Environmental Sciences, 11, 55–62.CrossRef
11.
Zurück zum Zitat Li, W., Duan, X., Jia, S., Zhang, L., Liu, Y., & Lin, J. (2012). A dynamic hysteresis-adjusting algorithm in LTE self-organization networks. In 2012 IEEE 75th vehicular technology conference (VTC Spring) (pp. 1–5), Yokohama, Japan. Li, W., Duan, X., Jia, S., Zhang, L., Liu, Y., & Lin, J. (2012). A dynamic hysteresis-adjusting algorithm in LTE self-organization networks. In 2012 IEEE 75th vehicular technology conference (VTC Spring) (pp. 1–5), Yokohama, Japan.
12.
Zurück zum Zitat Capdevielle, V., Feki, A., & Sorsy, E. (2012). Joint interference management and handover optimization in LTE small cells network. In 2012 IEEE international conference on communications (ICC) (pp. 6769–6773), Ottawa, ON, Canada. Capdevielle, V., Feki, A., & Sorsy, E. (2012). Joint interference management and handover optimization in LTE small cells network. In 2012 IEEE international conference on communications (ICC) (pp. 6769–6773), Ottawa, ON, Canada.
13.
Zurück zum Zitat Simsek, M., Bennis, M., & Guvenc, I. (2015). Mobility management in HetNets: A learning-based perspective. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–13.CrossRef Simsek, M., Bennis, M., & Guvenc, I. (2015). Mobility management in HetNets: A learning-based perspective. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–13.CrossRef
14.
Zurück zum Zitat Lobinger, A., Stefanski, S., Jansen, T., & Balan, I. (2011). Coordinating handover parameter optimization and load balancing in LTE self-optimizing networks. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5), Budapest, Hungary. Lobinger, A., Stefanski, S., Jansen, T., & Balan, I. (2011). Coordinating handover parameter optimization and load balancing in LTE self-optimizing networks. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5), Budapest, Hungary.
15.
Zurück zum Zitat Ben-Mubarak, M. A., Ali, B. M., Noordin, N. K., Ismail, A., & Ng, C. K. (2013). Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX. Wireless Personal Communications, 71(2), 1421–1442.CrossRef Ben-Mubarak, M. A., Ali, B. M., Noordin, N. K., Ismail, A., & Ng, C. K. (2013). Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX. Wireless Personal Communications, 71(2), 1421–1442.CrossRef
16.
Zurück zum Zitat Ali, Z., Baldo, N., Mangues-Bafalluy, J., & Giupponi, L. (2016). Machine learning based handover management for improved QoE in LTE. In NOMS 2016–2016 IEEE/IFIP network operations and management symposium (pp. 794–798), Istanbul, Turkey. Ali, Z., Baldo, N., Mangues-Bafalluy, J., & Giupponi, L. (2016). Machine learning based handover management for improved QoE in LTE. In NOMS 20162016 IEEE/IFIP network operations and management symposium (pp. 794–798), Istanbul, Turkey.
17.
Zurück zum Zitat Abuhasnah, J. F., & Muradov, F. K. (2017). Direction prediction assisted handover using the multilayer perception neural network to reduce the handover time delays in LTE networks. Procedia Computer Science, 120, 719–727.CrossRef Abuhasnah, J. F., & Muradov, F. K. (2017). Direction prediction assisted handover using the multilayer perception neural network to reduce the handover time delays in LTE networks. Procedia Computer Science, 120, 719–727.CrossRef
18.
Zurück zum Zitat Rath, A., & Panwar, S. (2012). Fast handover in cellular networks with femtocells. In 2012 IEEE international conference on communications (ICC) (pp. 2752–2757), Ottawa, ON, Canada. Rath, A., & Panwar, S. (2012). Fast handover in cellular networks with femtocells. In 2012 IEEE international conference on communications (ICC) (pp. 2752–2757), Ottawa, ON, Canada.
19.
Zurück zum Zitat Moysen, J., & Giupponi, L. (2018). From 4G to 5G: Self-organized network management meets machine learning. Computer Communications, 129, 248–268.CrossRef Moysen, J., & Giupponi, L. (2018). From 4G to 5G: Self-organized network management meets machine learning. Computer Communications, 129, 248–268.CrossRef
20.
Zurück zum Zitat Klaine, P. V., Imran, M. A., Onireti, O., & Souza, R. D. (2017). A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Communications Surveys & Tutorials, 19(4), 2392–2431.CrossRef Klaine, P. V., Imran, M. A., Onireti, O., & Souza, R. D. (2017). A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Communications Surveys & Tutorials, 19(4), 2392–2431.CrossRef
21.
Zurück zum Zitat Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility management, interference mitigation, and resource optimization. IEEE Wireless Communications, 24(6), 120–127.CrossRef Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility management, interference mitigation, and resource optimization. IEEE Wireless Communications, 24(6), 120–127.CrossRef
22.
Zurück zum Zitat Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.CrossRef Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.CrossRef
23.
Zurück zum Zitat Karabacak, M., Wang, D., Ishii, H., & Arslan, H. (2014). Mobility performance of macrocell-assisted small cells in Manhattan model. In 2014 IEEE 79th vehicular technology conference (VTC spring) (pp. 1–5), Seoul, South Korea. Karabacak, M., Wang, D., Ishii, H., & Arslan, H. (2014). Mobility performance of macrocell-assisted small cells in Manhattan model. In 2014 IEEE 79th vehicular technology conference (VTC spring) (pp. 1–5), Seoul, South Korea.
Metadaten
Titel
Data-driven handover optimization in small cell networks
verfasst von
Savita Kumari
Brahmjit Singh
Publikationsdatum
08.08.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02111-6

Weitere Artikel der Ausgabe 8/2019

Wireless Networks 8/2019 Zur Ausgabe

Neuer Inhalt