Skip to main content
main-content

Über dieses Buch

“Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering” provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation.
The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques.
The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB® unified platform, can be found on extras.springer.com.
The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.

Inhaltsverzeichnis

Frontmatter

2014 | OriginalPaper | Buchkapitel

Chapter 1. Introduction

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 2. Basic Statistics

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 3. Regression-Based Models

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 4. Time Series Modeling

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 5. Artificial Neural Networks

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 6. Support Vector Machines

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 7. Fuzzy Models

Shahab Araghinejad

2014 | OriginalPaper | Buchkapitel

Chapter 8. Hybrid Models and Multi-model Data Fusion

Shahab Araghinejad

Backmatter

Weitere Informationen

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Unsicherheitsabschätzung für die Berechnung von dynamischen Überschwemmungskarten – Fallstudie Kulmbach

Das vom BMBF geförderte Projekt FloodEvac hat zum Ziel, im Hochwasserfall räumliche und zeitliche Informationen der Hochwassergefährdung bereitzustellen. Im hier vorgestellten Teilprojekt werden Überschwemmungskarten zu Wassertiefen und Fließgeschwindigkeiten unter Angabe der Modellunsicherheiten berechnet.
Jetzt gratis downloaden!

Bildnachweise