Skip to main content
Erschienen in:

20.06.2024 | Original Paper

Data-driven virtual power plant aggregation method

verfasst von: Xueyan Bai, Yanfang Fan, Ruixin Hao, Jiaquan Yu

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Virtual power plant needs to use advanced coordinated control technology to aggregate a large amount of new energy to reliably meet the regulatory needs of the superior power grid. Currently, virtual power plant aggregation technology considering reliability effectively alleviates the problems of low reliability of traditional virtual power plants and poor absorption capacity of new energy. However, in the process of solving the optimization scheme, the traditional optimization solution based on physical models is faced with great challenges due to the complex characteristics such as diversity and heterogeneity of virtual power plant aggregation models. Therefore, a data-driven virtual power plant aggregation method is proposed. The dispatching characteristics of different virtual power plant clusters can be effectively expressed by using the load data, the historical dispatching data of virtual power plant clusters and the data-driven technology. The packaging model reflecting the reliability difference of virtual power plant assemblies is established. The results show that the calculation results indicate that the root mean square error of the model is only 0.2134. Compared to LSTM training model and BP neural networks, the RMSE has decreased by 44.22% and 54.41%, respectively, while the MAE has decreased by 48.32% and 57.84%, respectively. This method has good accuracy. At the same time, this method provides a new method for complex and heterogeneous power system dispatching operation of China's new power system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
8.
10.
Zurück zum Zitat Jia H, Wang X, Zhang X, Liu D (2023) Reliable Operation of Power Systems Integrated with Virtual Power Plants and Wind Power Considering Cyber Malfunctions. Business models and reliable operation of virtual power plants. Springer, Singapore, pp 135–157CrossRefMATH Jia H, Wang X, Zhang X, Liu D (2023) Reliable Operation of Power Systems Integrated with Virtual Power Plants and Wind Power Considering Cyber Malfunctions. Business models and reliable operation of virtual power plants. Springer, Singapore, pp 135–157CrossRefMATH
14.
Zurück zum Zitat Akdoğan C, Özer T, Oğuz Y (2024) Design and implementation of an AI-controlled spraying drone for agricultural applications using advanced image preprocessing techniques. Robot Intell Autom 44(1):131–151MATH Akdoğan C, Özer T, Oğuz Y (2024) Design and implementation of an AI-controlled spraying drone for agricultural applications using advanced image preprocessing techniques. Robot Intell Autom 44(1):131–151MATH
15.
Zurück zum Zitat Özer T, Türkmen Ö (2024) An approach based on deep learning methods to detect the condition of solar panels in solar power plants. Comput Electr Eng 116:109143CrossRefMATH Özer T, Türkmen Ö (2024) An approach based on deep learning methods to detect the condition of solar panels in solar power plants. Comput Electr Eng 116:109143CrossRefMATH
16.
Zurück zum Zitat Das A et al (2024) Gene selection based cancer classification with adaptive optimization using deep learning architecture. IEEE Access 12:62234–62255CrossRef Das A et al (2024) Gene selection based cancer classification with adaptive optimization using deep learning architecture. IEEE Access 12:62234–62255CrossRef
23.
Zurück zum Zitat Haipeng C, Yuehao Z, Binglu W et al (2022) Economic analysis of system rotating reserve based on improved CNN-LSTM short term wind power prediction. High Volt Technol 48(02):439–448 Haipeng C, Yuehao Z, Binglu W et al (2022) Economic analysis of system rotating reserve based on improved CNN-LSTM short term wind power prediction. High Volt Technol 48(02):439–448
24.
Zurück zum Zitat Yu L (2021) Research on driver mental load detection based on CNNLSTM. In: Hunan University Yu L (2021) Research on driver mental load detection based on CNNLSTM. In: Hunan University
Metadaten
Titel
Data-driven virtual power plant aggregation method
verfasst von
Xueyan Bai
Yanfang Fan
Ruixin Hao
Jiaquan Yu
Publikationsdatum
20.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02544-z