Skip to main content

2023 | OriginalPaper | Buchkapitel

Data Homogeneity Dependent Topic Modeling for Information Retrieval

verfasst von : Keerthana Sureshbabu Kashi, Abigail A. Antenor, Gabriel Isaac L. Ramolete, Adrienne Heinrich

Erschienen in: Intelligent Systems and Machine Learning

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel geht auf die Herausforderungen und Lösungen für die Themenmodellierung bei der Informationsgewinnung ein und betont die Bedeutung der Datenhomogenität. Es wertet verschiedene Algorithmen aus, darunter Non-negative Matrix Factorization (NMF), Latent Dirichlet Allocation (LDA), Latent Semantic Analysis (LSA) und BERTopic, und führt einen neuartigen Homogenitätsscore ein, der die Algorithmenauswahl steuert. Die Studie beleuchtet die Leistungsunterschiede dieser Algorithmen über verschiedene Homogenitätsstufen der Daten hinweg und bietet Einblicke, welcher Algorithmus unter unterschiedlichen Bedingungen am besten abschneidet. Diese umfassende Analyse zielt darauf ab, Fachleuten zu helfen, fundierte Entscheidungen bei der Auswahl von Methoden zur Themenmodellierung zu treffen, und letztlich die Kohärenz und Benutzerfreundlichkeit von Themenschlüsselwörtern zu verbessern, die aus verschiedenen Unternehmen generiert wurden.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jelodar, H., et al.: Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools Appl. 78(11), 15169–15211 (2019)CrossRef Jelodar, H., et al.: Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools Appl. 78(11), 15169–15211 (2019)CrossRef
3.
Zurück zum Zitat Joo, W., Lee, W., Park, S., Moon, I.-C.: Dirichlet variational autoencoder. Pattern Recogn. 107, 107514 (2020)CrossRef Joo, W., Lee, W., Park, S., Moon, I.-C.: Dirichlet variational autoencoder. Pattern Recogn. 107, 107514 (2020)CrossRef
4.
Zurück zum Zitat Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: variants, applications, and training. ACM Comput. Surv. (CSUR) 54(8), 1–49 (2021)CrossRef Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: variants, applications, and training. ACM Comput. Surv. (CSUR) 54(8), 1–49 (2021)CrossRef
6.
Zurück zum Zitat Wang, R., Zhou, D., He, Y.: ATM: adversarial-neural topic model. Inf. Process. Manag. 56(6), 102098 (2019)CrossRef Wang, R., Zhou, D., He, Y.: ATM: adversarial-neural topic model. Inf. Process. Manag. 56(6), 102098 (2019)CrossRef
7.
Zurück zum Zitat Zhao, H., Phung, D., Huynh, V., Jin, Y., Du, L., Buntine, W.: Topic modelling meets deep neural networks: a survey. arXiv preprint arXiv:2103.00498 (2021) Zhao, H., Phung, D., Huynh, V., Jin, Y., Du, L., Buntine, W.: Topic modelling meets deep neural networks: a survey. arXiv preprint arXiv:​2103.​00498 (2021)
8.
Zurück zum Zitat Doan, T.-N., Hoang, T.-A.: Benchmarking neural topic models: an empirical study. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4363–4368 (2021) Doan, T.-N., Hoang, T.-A.: Benchmarking neural topic models: an empirical study. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4363–4368 (2021)
9.
Zurück zum Zitat Nguyen, H.-H., Thanh, H.: Analyzing customer experience in hotel services using topic modeling. J. Inf. Process. Syst. 17, 586–598 (2021) Nguyen, H.-H., Thanh, H.: Analyzing customer experience in hotel services using topic modeling. J. Inf. Process. Syst. 17, 586–598 (2021)
10.
Zurück zum Zitat Egger, R., Yu, J.: A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify Twitter posts. Frontiers Sociol. 7 (2022) Egger, R., Yu, J.: A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify Twitter posts. Frontiers Sociol. 7 (2022)
11.
Zurück zum Zitat Tan, S., et al.: Interpreting the public sentiment variations on Twitter. IEEE Trans. Knowl. Data Eng. 26(5), 1158–1170 (2013) Tan, S., et al.: Interpreting the public sentiment variations on Twitter. IEEE Trans. Knowl. Data Eng. 26(5), 1158–1170 (2013)
12.
Zurück zum Zitat Xu, Z., Liu, Y., Xuan, J., Chen, H., Mei, L.: Crowdsourcing based social media data analysis of urban emergency events. Multimedia Tools Appl. 76(9), 11567–11584 (2017)CrossRef Xu, Z., Liu, Y., Xuan, J., Chen, H., Mei, L.: Crowdsourcing based social media data analysis of urban emergency events. Multimedia Tools Appl. 76(9), 11567–11584 (2017)CrossRef
13.
Zurück zum Zitat Vayansky, I., Kumar, S.A.: A review of topic modeling methods. Inf. Syst. 94, 101582 (2020)CrossRef Vayansky, I., Kumar, S.A.: A review of topic modeling methods. Inf. Syst. 94, 101582 (2020)CrossRef
14.
Zurück zum Zitat Sbalchiero, S., Eder, M.: Topic modeling, long texts and the best number of topics. Some problems and solutions. Qual. Quant. 54(4), 1095–1108 (2020)CrossRef Sbalchiero, S., Eder, M.: Topic modeling, long texts and the best number of topics. Some problems and solutions. Qual. Quant. 54(4), 1095–1108 (2020)CrossRef
15.
Zurück zum Zitat Hu, Y., Boyd-Graber, J., Satinoff, B., Smith, A.: Interactive topic modeling. Mach. Learn. 95(3), 423–469 (2014)MathSciNetCrossRef Hu, Y., Boyd-Graber, J., Satinoff, B., Smith, A.: Interactive topic modeling. Mach. Learn. 95(3), 423–469 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Suri, P., Roy, N.R.: Comparison between LDA & NMF for event-detection from large text stream data. In: 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–5 (2017) Suri, P., Roy, N.R.: Comparison between LDA & NMF for event-detection from large text stream data. In: 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–5 (2017)
17.
Zurück zum Zitat Anantharaman, A., Jadiya, A., Siri, C.T.S., Adikar, B.N., Mohan, B.: Performance evaluation of topic modeling algorithms for text classification. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 704–708 (2019) Anantharaman, A., Jadiya, A., Siri, C.T.S., Adikar, B.N., Mohan, B.: Performance evaluation of topic modeling algorithms for text classification. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 704–708 (2019)
18.
Zurück zum Zitat Qiang, J., Qian, Z., Li, Y., Yuan, Y., Wu, X.: Short text topic modeling techniques, applications, and performance: a survey. IEEE Trans. Knowl. Data Eng. 34(3), 1427–1445 (2022)CrossRef Qiang, J., Qian, Z., Li, Y., Yuan, Y., Wu, X.: Short text topic modeling techniques, applications, and performance: a survey. IEEE Trans. Knowl. Data Eng. 34(3), 1427–1445 (2022)CrossRef
19.
Zurück zum Zitat Nikolenko, S.I., Koltcov, S., Koltsova, O.: Topic modelling for qualitative studies. J. Inf. Sci. 43(1), 88–102 (2017)CrossRef Nikolenko, S.I., Koltcov, S., Koltsova, O.: Topic modelling for qualitative studies. J. Inf. Sci. 43(1), 88–102 (2017)CrossRef
20.
Zurück zum Zitat DiMaggio, P., Nag, M., Blei, D.: Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of us government arts funding. Poetics 41(6), 570–606 (2013)CrossRef DiMaggio, P., Nag, M., Blei, D.: Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of us government arts funding. Poetics 41(6), 570–606 (2013)CrossRef
21.
Zurück zum Zitat Grimmer, J.: A Bayesian hierarchical topic model for political texts: measuring expressed agendas in senate press releases. Polit. Anal. 18(1), 1–35 (2010)MathSciNetCrossRef Grimmer, J.: A Bayesian hierarchical topic model for political texts: measuring expressed agendas in senate press releases. Polit. Anal. 18(1), 1–35 (2010)MathSciNetCrossRef
22.
Zurück zum Zitat Quinn, K.M., Monroe, B.L., Colaresi, M., Crespin, M.H., Radev, D.R.: How to analyze political attention with minimal assumptions and costs. Am. J. Polit. Sci. 54(1), 209–228 (2010)CrossRef Quinn, K.M., Monroe, B.L., Colaresi, M., Crespin, M.H., Radev, D.R.: How to analyze political attention with minimal assumptions and costs. Am. J. Polit. Sci. 54(1), 209–228 (2010)CrossRef
23.
Zurück zum Zitat Jockers, M.L., Mimno, D.: Significant themes in 19th-century literature. Poetics 41(6), 750–769 (2013)CrossRef Jockers, M.L., Mimno, D.: Significant themes in 19th-century literature. Poetics 41(6), 750–769 (2013)CrossRef
24.
Zurück zum Zitat Baum, D.: Recognising speakers from the topics they talk about. Speech Commun. 54(10), 1132–1142 (2012)CrossRef Baum, D.: Recognising speakers from the topics they talk about. Speech Commun. 54(10), 1132–1142 (2012)CrossRef
25.
Zurück zum Zitat Elgesem, D., Feinerer, I., Steskal, L.: Bloggers’ responses to the Snowden affair: combining automated and manual methods in the analysis of news blogging. Comput. Support. Coop. Work (CSCW) 25(2), 167–191 (2016)CrossRef Elgesem, D., Feinerer, I., Steskal, L.: Bloggers’ responses to the Snowden affair: combining automated and manual methods in the analysis of news blogging. Comput. Support. Coop. Work (CSCW) 25(2), 167–191 (2016)CrossRef
26.
Zurück zum Zitat Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, pp. 95–104. IEEE (2010) Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, pp. 95–104. IEEE (2010)
27.
Zurück zum Zitat Gethers, M., Poshyvanyk, D.: Using relational topic models to capture coupling among classes in object-oriented software systems. In: 2010 IEEE International Conference on Software Maintenance, pp. 1–10. IEEE (2010) Gethers, M., Poshyvanyk, D.: Using relational topic models to capture coupling among classes in object-oriented software systems. In: 2010 IEEE International Conference on Software Maintenance, pp. 1–10. IEEE (2010)
28.
Zurück zum Zitat Thomas, S.W.: Mining software repositories using topic models. In: Proceedings of the 33rd International Conference on Software Engineering, pp. 1138–1139 (2011) Thomas, S.W.: Mining software repositories using topic models. In: Proceedings of the 33rd International Conference on Software Engineering, pp. 1138–1139 (2011)
29.
Zurück zum Zitat Tian, K., Revelle, M., Poshyvanyk, D.: Using latent Dirichlet allocation for automatic categorization of software. In: 2009 6th IEEE International Working Conference on Mining Software Repositories, pp. 163–166. IEEE (2009) Tian, K., Revelle, M., Poshyvanyk, D.: Using latent Dirichlet allocation for automatic categorization of software. In: 2009 6th IEEE International Working Conference on Mining Software Repositories, pp. 163–166. IEEE (2009)
30.
Zurück zum Zitat Özdağoğlu, G., Kapucugil-Ikiz, A., Celik, A.F.: Topic modelling-based decision framework for analysing digital voice of the customer. Total Qual. Manag. Bus. Excellence 29(13–14), 1545–1562 (2018)CrossRef Özdağoğlu, G., Kapucugil-Ikiz, A., Celik, A.F.: Topic modelling-based decision framework for analysing digital voice of the customer. Total Qual. Manag. Bus. Excellence 29(13–14), 1545–1562 (2018)CrossRef
31.
Zurück zum Zitat Barravecchia, F., Mastrogiacomo, L., Franceschini, F.: Digital voice-of-customer processing by topic modelling algorithms: insights to validate empirical results. Int. J. Qual. Reliab. Manag. (2021) Barravecchia, F., Mastrogiacomo, L., Franceschini, F.: Digital voice-of-customer processing by topic modelling algorithms: insights to validate empirical results. Int. J. Qual. Reliab. Manag. (2021)
32.
Zurück zum Zitat Ding, K., Choo, W.C., Ng, K.Y., Ng, S.I.: Employing structural topic modelling to explore perceived service quality attributes in Airbnb accommodation. Int. J. Hosp. Manag. 91, 102676 (2020)CrossRef Ding, K., Choo, W.C., Ng, K.Y., Ng, S.I.: Employing structural topic modelling to explore perceived service quality attributes in Airbnb accommodation. Int. J. Hosp. Manag. 91, 102676 (2020)CrossRef
33.
Zurück zum Zitat Putranto, Y., Sartono, B., Djuraidah, A.: Topic modelling and hotel rating prediction based on customer review in Indonesia. Int. J. Manag. Decis. Mak. 20(3), 282–307 (2021) Putranto, Y., Sartono, B., Djuraidah, A.: Topic modelling and hotel rating prediction based on customer review in Indonesia. Int. J. Manag. Decis. Mak. 20(3), 282–307 (2021)
34.
Zurück zum Zitat Gregoriades, A., Pampaka, M., Herodotou, H., Christodoulou, E.: Supporting digital content marketing and messaging through topic modelling and decision trees. Expert Syst. Appl. 184, 115546 (2021)CrossRef Gregoriades, A., Pampaka, M., Herodotou, H., Christodoulou, E.: Supporting digital content marketing and messaging through topic modelling and decision trees. Expert Syst. Appl. 184, 115546 (2021)CrossRef
35.
Zurück zum Zitat Sánchez-Franco, M.J., Arenas-Márquez, F.J., Alonso-Dos-Santos, M.: Using structural topic modelling to predict users’ sentiment towards intelligent personal agents. An application for Amazon’s echo and Google home. J. Retail. Consum. Serv. 63, 102658 (2021)CrossRef Sánchez-Franco, M.J., Arenas-Márquez, F.J., Alonso-Dos-Santos, M.: Using structural topic modelling to predict users’ sentiment towards intelligent personal agents. An application for Amazon’s echo and Google home. J. Retail. Consum. Serv. 63, 102658 (2021)CrossRef
36.
Zurück zum Zitat Li, X., Lei, L.: A bibliometric analysis of topic modelling studies (2000–2017). J. Inf. Sci. 47(2), 161–175 (2021)CrossRef Li, X., Lei, L.: A bibliometric analysis of topic modelling studies (2000–2017). J. Inf. Sci. 47(2), 161–175 (2021)CrossRef
37.
Zurück zum Zitat Angel, M.M., Rey, J.-M.: On the role of Shannon’s entropy as a measure of heterogeneity. Geoderma 98(1–2), 1–3 (2000) Angel, M.M., Rey, J.-M.: On the role of Shannon’s entropy as a measure of heterogeneity. Geoderma 98(1–2), 1–3 (2000)
38.
Zurück zum Zitat Torres-García, A.A., Mendoza-Montoya, O., Molinas, M., Antelis, J.M., Moctezuma, L.A., Hernández-Del-Toro, T.: Pre-processing and feature extraction. In: Torres-García, A.A., Reyes-García, C.A., Villaseñor-Pineda, L., Mendoza-Montoya, O. (eds.) BioSignal Processing and Classification Using Computational Learning and Intelligence, pp. 59–91. Academic Press (2022) Torres-García, A.A., Mendoza-Montoya, O., Molinas, M., Antelis, J.M., Moctezuma, L.A., Hernández-Del-Toro, T.: Pre-processing and feature extraction. In: Torres-García, A.A., Reyes-García, C.A., Villaseñor-Pineda, L., Mendoza-Montoya, O. (eds.) BioSignal Processing and Classification Using Computational Learning and Intelligence, pp. 59–91. Academic Press (2022)
39.
Zurück zum Zitat Zhang, Y.: Modelling the lexical complexity of homogenous texts: a time series approach. Qual. Quant. (2022) Zhang, Y.: Modelling the lexical complexity of homogenous texts: a time series approach. Qual. Quant. (2022)
40.
Zurück zum Zitat Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2019) Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2019)
41.
Zurück zum Zitat Mitkov, R.: The Oxford Handbook of Computational Linguistics. Oxford University Press (2021) Mitkov, R.: The Oxford Handbook of Computational Linguistics. Oxford University Press (2021)
42.
Zurück zum Zitat Kim, S.-W., Gil, J.-M.: Research paper classification systems based on TF-IDF and LDA schemes. Hum. Centric Comput. Inf. Sci. 9(1) (2019) Kim, S.-W., Gil, J.-M.: Research paper classification systems based on TF-IDF and LDA schemes. Hum. Centric Comput. Inf. Sci. 9(1) (2019)
43.
Zurück zum Zitat Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2013)CrossRef Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2013)CrossRef
44.
Zurück zum Zitat Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)CrossRef Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)CrossRef
45.
Zurück zum Zitat Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefMATH Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefMATH
46.
Zurück zum Zitat Dumais, S.T., et al.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)CrossRef Dumais, S.T., et al.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)CrossRef
47.
Zurück zum Zitat Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRef Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRef
48.
Zurück zum Zitat Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:​1810.​04805 (2018)
49.
50.
Zurück zum Zitat Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 (2018) Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:​1804.​07461 (2018)
51.
Zurück zum Zitat Vaswani, A.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Vaswani, A.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
52.
Zurück zum Zitat Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 262–272 (2011) Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 262–272 (2011)
53.
Zurück zum Zitat Ge, J., Lin, S., Fang, Y.: A text classification algorithm based on topic model and convolutional neural network. J. Phys: Conf. Ser. 1748(3), 032036 (2021) Ge, J., Lin, S., Fang, Y.: A text classification algorithm based on topic model and convolutional neural network. J. Phys: Conf. Ser. 1748(3), 032036 (2021)
54.
Zurück zum Zitat Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)CrossRef Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)CrossRef
55.
Zurück zum Zitat Adhitama, R., Kusumaningrum, R., Gernowo, R.: Topic labeling towards news document collection based on latent Dirichlet allocation and ontology. In: 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), pp. 247–252 (2017) Adhitama, R., Kusumaningrum, R., Gernowo, R.: Topic labeling towards news document collection based on latent Dirichlet allocation and ontology. In: 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), pp. 247–252 (2017)
56.
Zurück zum Zitat Vieira, S.M., Kaymak, U., Sousa, J.M.: Cohen’s kappa coefficient as a performance measure for feature selection. In: International Conference on Fuzzy Systems (2010) Vieira, S.M., Kaymak, U., Sousa, J.M.: Cohen’s kappa coefficient as a performance measure for feature selection. In: International Conference on Fuzzy Systems (2010)
58.
Zurück zum Zitat McHugh, M.L.: Interrater reliability: the Kappa statistic. Biochemia Medica, pp. 276–282 (2012) McHugh, M.L.: Interrater reliability: the Kappa statistic. Biochemia Medica, pp. 276–282 (2012)
Metadaten
Titel
Data Homogeneity Dependent Topic Modeling for Information Retrieval
verfasst von
Keerthana Sureshbabu Kashi
Abigail A. Antenor
Gabriel Isaac L. Ramolete
Adrienne Heinrich
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_6