Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Geotechnical and Geological Engineering 11/2022

14.07.2022 | Original Paper

Data Mining for Landslide Genetic Mechanism Analysis in the Yunnan Province of China

verfasst von: Yan Du, Chen Chen

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Landslide susceptibility analysis based on the strong ability of data mining of Geographic Information System (GIS) has become a hot topic in international landslide research. This paper used optimized decision tree and GIS databases to analyze the sensitivity in the northwest mountain areas of Yunnan province of China, and then discussed the formation mechanism of the landslide happened in the area. The translational landslide located in the area with an average gradient less than or equal to 28.7° was reclassified as a higher level 3 sensitive area than before according to the normalized different fault index (NDFI). The results showed that the data mining based on GIS 3D space–time information database can help to find the unique topography, geology hydrology and the other typical spatial information of some special typed of landslides such as translational landslides, thus it can illustrate the relationship between the landslides and their sensitivity factors. The improved landslide susceptibility analysis will provide a new method for identifying the genetic mechanism of landslide, and play an important role in the government regional planning and disaster prevention measures.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
Zurück zum Zitat El Mekki A, Hadji R, Chemseddine F (2017) Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in souk Ahras region. Min Sci 24:237–249 El Mekki A, Hadji R, Chemseddine F (2017) Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in souk Ahras region. Min Sci 24:237–249
Zurück zum Zitat Hadji R, Limani Y, Demdoum A (2014) Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. In 2014 1st international conference on information and communication technologies for disaster Management (ICT-DM) 1–10. Hadji R, Limani Y, Demdoum A (2014) Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. In 2014 1st international conference on information and communication technologies for disaster Management (ICT-DM) 1–10.
Zurück zum Zitat Hungr O, Fell R, Couture R (2005) Landslide risk management. CRC Press, London CrossRef Hungr O, Fell R, Couture R (2005) Landslide risk management. CRC Press, London CrossRef
Zurück zum Zitat Mokarram M, Hamzeh S, Aminzadeh F, Zarei AR (2015) Using machine learning for land suitability classification. West African J Appl Ecol 23(1):63–73 Mokarram M, Hamzeh S, Aminzadeh F, Zarei AR (2015) Using machine learning for land suitability classification. West African J Appl Ecol 23(1):63–73
Zurück zum Zitat Musungu K, Motala S, Smit J (2012) Using multi-criteria evaluation and GIS for flood risk analysis in informal settlements of Cape Town: the case of Graveyard Pond. S Afr J Geomat 1:92–108 Musungu K, Motala S, Smit J (2012) Using multi-criteria evaluation and GIS for flood risk analysis in informal settlements of Cape Town: the case of Graveyard Pond. S Afr J Geomat 1:92–108
Zurück zum Zitat Tang Y, Wei F, Li Z, Sun Q (2015) An overview of landslide risk management. J Catastrop 30:141–149 Tang Y, Wei F, Li Z, Sun Q (2015) An overview of landslide risk management. J Catastrop 30:141–149
Zurück zum Zitat Yu B, Sun H, Shang Y, Li H (2006) Characteristics and stability analysis of Xiashan Landslide in Zhejiang province. Chin J Rock Mech Eng 25:2875–2881 Yu B, Sun H, Shang Y, Li H (2006) Characteristics and stability analysis of Xiashan Landslide in Zhejiang province. Chin J Rock Mech Eng 25:2875–2881
Zurück zum Zitat Zhang Z, Wang S, Wang L (2009) The analytical principle on engineering geology. Geological Publishing House, Beijing Zhang Z, Wang S, Wang L (2009) The analytical principle on engineering geology. Geological Publishing House, Beijing
Metadaten
Titel
Data Mining for Landslide Genetic Mechanism Analysis in the Yunnan Province of China
verfasst von
Yan Du
Chen Chen
Publikationsdatum
14.07.2022
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 11/2022
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-022-02237-z

Weitere Artikel der Ausgabe 11/2022

Geotechnical and Geological Engineering 11/2022 Zur Ausgabe