Skip to main content

2023 | OriginalPaper | Buchkapitel

5. Data Preprocessing Technology in Pipeline Health Monitoring

verfasst von : Hongfang Lu, Zhao-Dong Xu, Tom Iseley, Haoyan Peng, Lingdi Fu

Erschienen in: Pipeline Inspection and Health Monitoring Technology

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many years ago, engineers and scholars began to use a large amount of data obtained from inspection and monitoring to carry out health monitoring and fault diagnosis of building structures, and the research and application are mainly concentrated in the field of bridges and tunnels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun, L., Shang, Z., Xia, Y., Bhowmick, S., & Nagarajaiah, S. (2020). Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection. Journal of Structural Engineering, 5, 04020073.CrossRef Sun, L., Shang, Z., Xia, Y., Bhowmick, S., & Nagarajaiah, S. (2020). Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection. Journal of Structural Engineering, 5, 04020073.CrossRef
2.
Zurück zum Zitat Yang, J., Xiang, F., Li, R., Zhang, L., Yang, X., Jiang, S., Zhang, H., Wang, D., & Liu, X. (2022). Intelligent bridge management via big data knowledge engineering. Automation in Construction, 135, 104118. Yang, J., Xiang, F., Li, R., Zhang, L., Yang, X., Jiang, S., Zhang, H., Wang, D., & Liu, X. (2022). Intelligent bridge management via big data knowledge engineering. Automation in Construction, 135, 104118.
3.
Zurück zum Zitat Roshandeh, A. M., Poormirzaee, R., & Ansari, F. S. (2014). Systematic data management for real-time bridge health monitoring using layered big data and cloud computing. International Journal of Innovation and Scientific Research, 2(1), 29–39. Roshandeh, A. M., Poormirzaee, R., & Ansari, F. S. (2014). Systematic data management for real-time bridge health monitoring using layered big data and cloud computing. International Journal of Innovation and Scientific Research, 2(1), 29–39.
4.
Zurück zum Zitat Wang, T., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Cao, J. (2018). Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Communications Magazine, 56(3), 128–133.CrossRef Wang, T., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Cao, J. (2018). Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Communications Magazine, 56(3), 128–133.CrossRef
5.
Zurück zum Zitat Li, R., Mo, T., Yang, J., Jiang, S., Li, T., & Liu, Y. (2020). Ontologies-based domain knowledge modeling and heterogeneous sensor data integration for bridge health monitoring systems. IEEE Transactions on Industrial Informatics, 17(1), 321–332.CrossRef Li, R., Mo, T., Yang, J., Jiang, S., Li, T., & Liu, Y. (2020). Ontologies-based domain knowledge modeling and heterogeneous sensor data integration for bridge health monitoring systems. IEEE Transactions on Industrial Informatics, 17(1), 321–332.CrossRef
6.
Zurück zum Zitat Domaneschi, M., Casciati, S., Catbas, N., Cimellaro, G. P., Inaudi, D., & Marano, G. C. (2020). Structural health monitoring of in-service tunnels. International Journal of Sustainable Materials and Structural Systems, 4(2–4), 268–291.CrossRef Domaneschi, M., Casciati, S., Catbas, N., Cimellaro, G. P., Inaudi, D., & Marano, G. C. (2020). Structural health monitoring of in-service tunnels. International Journal of Sustainable Materials and Structural Systems, 4(2–4), 268–291.CrossRef
7.
Zurück zum Zitat Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E., & Chiroma, H. (2016). The role of big data in smart city. International Journal of information management, 36(5), 748–758. Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E., & Chiroma, H. (2016). The role of big data in smart city. International Journal of information management, 36(5), 748–758.
8.
Zurück zum Zitat Cai, G., & Mahadevan, S. (2018). Big data analytics in uncertainty quantification: Application to structural diagnosis and prognosis. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1, 04018003.CrossRef Cai, G., & Mahadevan, S. (2018). Big data analytics in uncertainty quantification: Application to structural diagnosis and prognosis. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1, 04018003.CrossRef
9.
Zurück zum Zitat Liu, Q., Lu, G., Huang, J., & Bai, D. (2020). Development of tunnel intelligent monitoring and early warning system based on micro-service architecture: The case of AnPing tunnel. Geomatics, Natural Hazards and Risk, 11(1), 1404–1425.CrossRef Liu, Q., Lu, G., Huang, J., & Bai, D. (2020). Development of tunnel intelligent monitoring and early warning system based on micro-service architecture: The case of AnPing tunnel. Geomatics, Natural Hazards and Risk, 11(1), 1404–1425.CrossRef
10.
Zurück zum Zitat Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., & Yang, Q. (2017). Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Transactions on Industrial informatics, 13(5), 2140–2150.CrossRef Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., & Yang, Q. (2017). Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Transactions on Industrial informatics, 13(5), 2140–2150.CrossRef
11.
Zurück zum Zitat Lu, H., Guo, L., Azimi, M., & Huang, K. (2019). Oil and Gas 4.0 era: A systematic review and outlook. Computers in Industry, 111, 68–90. Lu, H., Guo, L., Azimi, M., & Huang, K. (2019). Oil and Gas 4.0 era: A systematic review and outlook. Computers in Industry, 111, 68–90.
12.
Zurück zum Zitat McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. Harvard business review, 90(10), 60–68. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. Harvard business review, 90(10), 60–68.
17.
Zurück zum Zitat Mohammadpoor, M., & Torabi, F. (2020). Big data analytics in oil and gas industry: An emerging trend. Petroleum, 6(4), 321–328.CrossRef Mohammadpoor, M., & Torabi, F. (2020). Big data analytics in oil and gas industry: An emerging trend. Petroleum, 6(4), 321–328.CrossRef
18.
Zurück zum Zitat Alfaleh, A., Wang, Y., Yan, B., Killough, J., Song, H., & Wei, C. (2015, September). Topological data analysis to solve big data problem in reservoir engineering: Application to inverted 4D seismic data. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. Alfaleh, A., Wang, Y., Yan, B., Killough, J., Song, H., & Wei, C. (2015, September). Topological data analysis to solve big data problem in reservoir engineering: Application to inverted 4D seismic data. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
19.
Zurück zum Zitat Roden, R. (2016, October). Seismic interpretation in the age of big data. In 2016 SEG International Exposition and Annual Meeting. OnePetro. Roden, R. (2016, October). Seismic interpretation in the age of big data. In 2016 SEG International Exposition and Annual Meeting. OnePetro.
20.
Zurück zum Zitat Joshi, P., Thapliyal, R., Chittambakkam, A. A., Ghosh, R., Bhowmick, S., & Khan, S. N. (2018, March). Big data analytics for micro-seismic monitoring. In Offshore Technology Conference Asia. OnePetro. Joshi, P., Thapliyal, R., Chittambakkam, A. A., Ghosh, R., Bhowmick, S., & Khan, S. N. (2018, March). Big data analytics for micro-seismic monitoring. In Offshore Technology Conference Asia. OnePetro.
21.
Zurück zum Zitat Olneva, T., Kuzmin, D., Rasskazova, S., & Timirgalin, A. (2018, September). Big data approach for geological study of the big region West Siberia. In SPE Annual Technical Conference and Exhibition. OnePetro. Olneva, T., Kuzmin, D., Rasskazova, S., & Timirgalin, A. (2018, September). Big data approach for geological study of the big region West Siberia. In SPE Annual Technical Conference and Exhibition. OnePetro.
22.
Zurück zum Zitat Duffy, W., Rigg, J., & Maidla, E. (2017, March). Efficiency improvement in the bakken realized through drilling data processing automation and the recognition and standardization of best safe practices. In SPE/IADC Drilling Conference and Exhibition. OnePetro. Duffy, W., Rigg, J., & Maidla, E. (2017, March). Efficiency improvement in the bakken realized through drilling data processing automation and the recognition and standardization of best safe practices. In SPE/IADC Drilling Conference and Exhibition. OnePetro.
23.
Zurück zum Zitat Maidla, E., Maidla, W., Rigg, J., Crumrine, M., & Wolf-Zoellner, P. (2018, March). Drilling analysis using big data has been misused and abused. In IADC/SPE Drilling Conference and Exhibition. OnePetro. Maidla, E., Maidla, W., Rigg, J., Crumrine, M., & Wolf-Zoellner, P. (2018, March). Drilling analysis using big data has been misused and abused. In IADC/SPE Drilling Conference and Exhibition. OnePetro.
24.
Zurück zum Zitat Yin, Q., Yang, J., Zhou, B., Jiang, M., Chen, X., Fu, C., Yan, L., Li, L., Li, Y., & Liu, Z. (2018, January). Improve the drilling operations efficiency by the big data mining of Real-Time logging. In SPE/IADC Middle East Drilling Technology Conference and Exhibition. OnePetro. Yin, Q., Yang, J., Zhou, B., Jiang, M., Chen, X., Fu, C., Yan, L., Li, L., Li, Y., & Liu, Z. (2018, January). Improve the drilling operations efficiency by the big data mining of Real-Time logging. In SPE/IADC Middle East Drilling Technology Conference and Exhibition. OnePetro.
25.
Zurück zum Zitat Johnston, J., & Guichard, A. (2015, May). New findings in drilling and wells using big data analytics. In Offshore technology conference. OnePetro. Johnston, J., & Guichard, A. (2015, May). New findings in drilling and wells using big data analytics. In Offshore technology conference. OnePetro.
26.
Zurück zum Zitat Hutchinson, M., Thornton, B., Theys, P., & Bolt, H. (2018, September). Optimizing drilling by simulation and automation with big data. In SPE Annual Technical Conference and Exhibition. OnePetro. Hutchinson, M., Thornton, B., Theys, P., & Bolt, H. (2018, September). Optimizing drilling by simulation and automation with big data. In SPE Annual Technical Conference and Exhibition. OnePetro.
27.
Zurück zum Zitat Bello, O., Yang, D., Lazarus, S., Wang, X. S., & Denney, T. (2017, May). Next generation downhole big data platform for dynamic data-driven well and reservoir management. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. OnePetro. Bello, O., Yang, D., Lazarus, S., Wang, X. S., & Denney, T. (2017, May). Next generation downhole big data platform for dynamic data-driven well and reservoir management. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. OnePetro.
28.
Zurück zum Zitat Brulé, M. R. (2015, March). The data reservoir: How big data technologies advance data management and analytics in E&P. In SPE Digital Energy Conference and Exhibition. OnePetro. Brulé, M. R. (2015, March). The data reservoir: How big data technologies advance data management and analytics in E&P. In SPE Digital Energy Conference and Exhibition. OnePetro.
29.
Zurück zum Zitat Haghighat, S. A., Mohaghegh, S. D., Gholami, V., Shahkarami, A., & Moreno, D. (2013, September). Using big data and smart field technology for detecting leakage in a CO2 storage project. In SPE annual technical conference and exhibition. OnePetro. Haghighat, S. A., Mohaghegh, S. D., Gholami, V., Shahkarami, A., & Moreno, D. (2013, September). Using big data and smart field technology for detecting leakage in a CO2 storage project. In SPE annual technical conference and exhibition. OnePetro.
30.
Zurück zum Zitat Popa, A. S., Grijalva, E., Cassidy, S., Medel, J., & Cover, A. (2015, September). Intelligent use of big data for heavy oil reservoir management. In SPE Annual Technical Conference and Exhibition. OnePetro. Popa, A. S., Grijalva, E., Cassidy, S., Medel, J., & Cover, A. (2015, September). Intelligent use of big data for heavy oil reservoir management. In SPE Annual Technical Conference and Exhibition. OnePetro.
31.
Zurück zum Zitat Lin, A. (2014, September). Principles of big data algorithms and application for unconventional oil and gas resources. In SPE Large Scale Computing and Big Data Challenges in Reservoir Simulation Conference and Exhibition. OnePetro. Lin, A. (2014, September). Principles of big data algorithms and application for unconventional oil and gas resources. In SPE Large Scale Computing and Big Data Challenges in Reservoir Simulation Conference and Exhibition. OnePetro.
32.
Zurück zum Zitat Chelmis, C., Zhao, J., Sorathia, V., Agarwal, S., & Prasanna, V. (2012, March). Semiautomatic, semantic assistance to manual curation of data in smart oil fields. In SPE Western Regional Meeting. OnePetro. Chelmis, C., Zhao, J., Sorathia, V., Agarwal, S., & Prasanna, V. (2012, March). Semiautomatic, semantic assistance to manual curation of data in smart oil fields. In SPE Western Regional Meeting. OnePetro.
33.
Zurück zum Zitat Udegbe, E., Morgan, E., & Srinivasan, S. (2017, October). From face detection to fractured reservoir characterization: Big data analytics for restimulation candidate selection. In SPE Annual Technical Conference and Exhibition. OnePetro. Udegbe, E., Morgan, E., & Srinivasan, S. (2017, October). From face detection to fractured reservoir characterization: Big data analytics for restimulation candidate selection. In SPE Annual Technical Conference and Exhibition. OnePetro.
34.
Zurück zum Zitat Xiao, J., & Sun, X. (2017, September). Big data analytics drive EOR projects. In SPE Offshore Europe Conference and Exhibition. OnePetro. Xiao, J., & Sun, X. (2017, September). Big data analytics drive EOR projects. In SPE Offshore Europe Conference and Exhibition. OnePetro.
35.
Zurück zum Zitat Seemann, D., Williamson, M., & Hasan, S. (2013, October). Improving resevoir management through big data technologies. In SPE Middle East Intelligent Energy Conference and Exhibition. OnePetro. Seemann, D., Williamson, M., & Hasan, S. (2013, October). Improving resevoir management through big data technologies. In SPE Middle East Intelligent Energy Conference and Exhibition. OnePetro.
36.
Zurück zum Zitat Rollins, B. T., Broussard, A., Cummins, B., Smiley, A., & Dobbs, N. (2017, July). Continental production allocation and analysis through big data. In SPE/AAPG/SEG Unconventional Resources Technology Conference. OnePetro. Rollins, B. T., Broussard, A., Cummins, B., Smiley, A., & Dobbs, N. (2017, July). Continental production allocation and analysis through big data. In SPE/AAPG/SEG Unconventional Resources Technology Conference. OnePetro.
37.
Zurück zum Zitat Sarapulov, N. P., & Khabibullin, R. A. (2017, October). Application of big data tools for unstructured data analysis to improve ESP operation efficiency. In SPE Russian Petroleum Technology Conference. OnePetro. Sarapulov, N. P., & Khabibullin, R. A. (2017, October). Application of big data tools for unstructured data analysis to improve ESP operation efficiency. In SPE Russian Petroleum Technology Conference. OnePetro.
38.
Zurück zum Zitat Gupta, S., Saputelli, L., & Nikolaou, M. (2016, October). Big data analytics workflow to safeguard ESP operations in real-time. In SPE North America Artificial Lift Conference and Exhibition. OnePetro. Gupta, S., Saputelli, L., & Nikolaou, M. (2016, October). Big data analytics workflow to safeguard ESP operations in real-time. In SPE North America Artificial Lift Conference and Exhibition. OnePetro.
39.
Zurück zum Zitat Palmer, T., & Turland, M. (2016, October). Proactive rod pump optimization: Leveraging big data to accelerate and improve operations. In SPE North America Artificial Lift Conference and Exhibition. OnePetro. Palmer, T., & Turland, M. (2016, October). Proactive rod pump optimization: Leveraging big data to accelerate and improve operations. In SPE North America Artificial Lift Conference and Exhibition. OnePetro.
40.
Zurück zum Zitat Betz, J. (2015). Low oil prices increase value of big data in fracturing. Journal of Petroleum Technology, 67(4), 60–61.MathSciNetCrossRef Betz, J. (2015). Low oil prices increase value of big data in fracturing. Journal of Petroleum Technology, 67(4), 60–61.MathSciNetCrossRef
41.
Zurück zum Zitat Ockree, M., Brown, K. G., Frantz, J., Deasy, M., & John, R. (2018, October). Integrating big data analytics into development planning optimization. In SPE/AAPG Eastern Regional Meeting. OnePetro. Ockree, M., Brown, K. G., Frantz, J., Deasy, M., & John, R. (2018, October). Integrating big data analytics into development planning optimization. In SPE/AAPG Eastern Regional Meeting. OnePetro.
42.
Zurück zum Zitat von Plate, M. (2016, September). Big data analytics for prognostic foresight. In SPE Intelligent Energy International Conference and Exhibition. OnePetro. von Plate, M. (2016, September). Big data analytics for prognostic foresight. In SPE Intelligent Energy International Conference and Exhibition. OnePetro.
43.
Zurück zum Zitat Brelsford, R. (2018). Repsol launches big data AI project at tarragona refinery. Oil and Gas Journal, 116. Brelsford, R. (2018). Repsol launches big data AI project at tarragona refinery. Oil and Gas Journal, 116.
44.
Zurück zum Zitat Khvostichenko, D., & Makarychev-Mikhailov, S. (2018, February). Effect of fracturing chemicals on well productivity: Avoiding pitfalls in big data analysis. In SPE International Conference and Exhibition on Formation Damage Control. OnePetro. Khvostichenko, D., & Makarychev-Mikhailov, S. (2018, February). Effect of fracturing chemicals on well productivity: Avoiding pitfalls in big data analysis. In SPE International Conference and Exhibition on Formation Damage Control. OnePetro.
45.
Zurück zum Zitat Anagnostopoulos, A. (2018, June). Big data techniques for ship performance study. In The 28th International Ocean and Polar Engineering Conference. OnePetro. Anagnostopoulos, A. (2018, June). Big data techniques for ship performance study. In The 28th International Ocean and Polar Engineering Conference. OnePetro.
46.
Zurück zum Zitat Park, S. W., Roh, M. I., Oh, M. J., Kim, S. H., Lee, W. J., Kim, I. I., & Kim, C. Y. (2018, June). Estimation model of energy efficiency operational indicator using public data based on big data technology. In The 28th International Ocean and Polar Engineering Conference. OnePetro. Park, S. W., Roh, M. I., Oh, M. J., Kim, S. H., Lee, W. J., Kim, I. I., & Kim, C. Y. (2018, June). Estimation model of energy efficiency operational indicator using public data based on big data technology. In The 28th International Ocean and Polar Engineering Conference. OnePetro.
47.
Zurück zum Zitat Tarrahi, M., & Shadravan, A. (2016, April). Advanced big data analytics improves HSE management. In SPE Bergen One Day Seminar. OnePetro. Tarrahi, M., & Shadravan, A. (2016, April). Advanced big data analytics improves HSE management. In SPE Bergen One Day Seminar. OnePetro.
48.
Zurück zum Zitat Tarrahi, M., & Shadravan, A. (2016, September). Intelligent HSE big data analytics platform promotes occupational safety. In SPE Annual Technical Conference and Exhibition. OnePetro. Tarrahi, M., & Shadravan, A. (2016, September). Intelligent HSE big data analytics platform promotes occupational safety. In SPE Annual Technical Conference and Exhibition. OnePetro.
49.
Zurück zum Zitat Pettinger, C. B. (2014, June). Leading indicators, culture and big data: Using your data to eliminate death. In ASSE Professional Development Conference and Exposition. OnePetro. Pettinger, C. B. (2014, June). Leading indicators, culture and big data: Using your data to eliminate death. In ASSE Professional Development Conference and Exposition. OnePetro.
50.
Zurück zum Zitat Cadei, L., Montini, M., Landi, F., Porcelli, F., Michetti, V., Origgi, M., & Duranton, S. (2018, November). Big data advanced anlytics to forecast operational upsets in upstream production system. In Abu Dhabi International Petroleum Exhibition & Conference. OnePetro. Cadei, L., Montini, M., Landi, F., Porcelli, F., Michetti, V., Origgi, M., & Duranton, S. (2018, November). Big data advanced anlytics to forecast operational upsets in upstream production system. In Abu Dhabi International Petroleum Exhibition & Conference. OnePetro.
56.
Zurück zum Zitat Hochstein, A., Horn, E., & Palomino, M. (2015, June). Intelligent pipeline solution: leveraging breakthrough industrial internet technologies and Big data analytics for safer, more efficient oil and gas pipeline operations. In 10th Pipeline Technology Conference 2015. EITEP Institute. Hochstein, A., Horn, E., & Palomino, M. (2015, June). Intelligent pipeline solution: leveraging breakthrough industrial internet technologies and Big data analytics for safer, more efficient oil and gas pipeline operations. In 10th Pipeline Technology Conference 2015. EITEP Institute.
57.
Zurück zum Zitat McHugh, M. L. (2013). The chi-square test of independence. Biochemia Medica, 23(2), 143–149.CrossRef McHugh, M. L. (2013). The chi-square test of independence. Biochemia Medica, 23(2), 143–149.CrossRef
58.
Zurück zum Zitat Franke, T. M., Ho, T., & Christie, C. A. (2012). The chi-square test: Often used and more often misinterpreted. American Journal of Evaluation, 33(3), 448–458.CrossRef Franke, T. M., Ho, T., & Christie, C. A. (2012). The chi-square test: Often used and more often misinterpreted. American Journal of Evaluation, 33(3), 448–458.CrossRef
59.
Zurück zum Zitat Tallarida, R. J., & Murray, R. B. (1987). Chi-square test. In Manual of pharmacologic calculations (pp. 140–142). Springer. Tallarida, R. J., & Murray, R. B. (1987). Chi-square test. In Manual of pharmacologic calculations (pp. 140–142). Springer.
60.
Zurück zum Zitat Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chi-square test. Journal of the American Statistical Association, 33(203), 526–536.MATHCrossRef Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chi-square test. Journal of the American Statistical Association, 33(203), 526–536.MATHCrossRef
62.
Zurück zum Zitat Azhagusundari, B., & Thanamani, A. S. (2013). Feature selection based on information gain. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(2), 18–21. Azhagusundari, B., & Thanamani, A. S. (2013). Feature selection based on information gain. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(2), 18–21.
63.
Zurück zum Zitat Roobaert, D., Karakoulas, G., & Chawla, N. V. (2006). Information gain, correlation and support vector machines. In Feature extraction (pp. 463–470). Springer. Roobaert, D., Karakoulas, G., & Chawla, N. V. (2006). Information gain, correlation and support vector machines. In Feature extraction (pp. 463–470). Springer.
64.
Zurück zum Zitat Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77–93.MathSciNetMATHCrossRef Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77–93.MathSciNetMATHCrossRef
65.
Zurück zum Zitat Nelson, J. D. (2005). Finding useful questions: On Bayesian diagnosticity, probability, impact, and information gain. Psychological review, 112(4), 979.CrossRef Nelson, J. D. (2005). Finding useful questions: On Bayesian diagnosticity, probability, impact, and information gain. Psychological review, 112(4), 979.CrossRef
66.
Zurück zum Zitat Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of abnormal psychology, 110(1), 40.CrossRef Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of abnormal psychology, 110(1), 40.CrossRef
67.
Zurück zum Zitat Jin, S., & Yeung, D. S. (2004, June). A covariance analysis model for DDoS attack detection. In 2004 IEEE International Conference on Communications (IEEE Cat. No. 04CH37577) (Vol. 4, pp. 1882–1886). IEEE. Jin, S., & Yeung, D. S. (2004, June). A covariance analysis model for DDoS attack detection. In 2004 IEEE International Conference on Communications (IEEE Cat. No. 04CH37577) (Vol. 4, pp. 1882–1886). IEEE.
68.
Zurück zum Zitat Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological bulletin, 105(2), 317.CrossRef Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological bulletin, 105(2), 317.CrossRef
69.
70.
Zurück zum Zitat Fornell, C. (1983). Issues in the application of covariance structure analysis: A comment. Journal of Consumer Research, 9(4), 443–448.CrossRef Fornell, C. (1983). Issues in the application of covariance structure analysis: A comment. Journal of Consumer Research, 9(4), 443–448.CrossRef
71.
Zurück zum Zitat Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4). Springer. Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4). Springer.
72.
Zurück zum Zitat Benesty, J., Chen, J., & Huang, Y. (2008). On the importance of the Pearson correlation coefficient in noise reduction. IEEE Transactions on Audio, Speech, and Language Processing, 16(4), 757–765.CrossRef Benesty, J., Chen, J., & Huang, Y. (2008). On the importance of the Pearson correlation coefficient in noise reduction. IEEE Transactions on Audio, Speech, and Language Processing, 16(4), 757–765.CrossRef
73.
Zurück zum Zitat Adler, J., & Parmryd, I. (2010). Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry Part A, 77(8), 733–742.CrossRef Adler, J., & Parmryd, I. (2010). Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry Part A, 77(8), 733–742.CrossRef
74.
Zurück zum Zitat Sedgwick, P. (2012). Pearson’s correlation coefficient. Bmj, 345. Sedgwick, P. (2012). Pearson’s correlation coefficient. Bmj, 345.
75.
Zurück zum Zitat Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.CrossRef Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.CrossRef
76.
Zurück zum Zitat De Winter, J. C., Gosling, S. D., & Potter, J. (2016). Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological Methods, 21(3), 273.CrossRef De Winter, J. C., Gosling, S. D., & Potter, J. (2016). Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological Methods, 21(3), 273.CrossRef
77.
Zurück zum Zitat Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-Pearson and Spearman correlation coefficients: Meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers, 17(2), 148–151.CrossRef Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-Pearson and Spearman correlation coefficients: Meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers, 17(2), 148–151.CrossRef
78.
Zurück zum Zitat Rebekić, A., Lončarić, Z., Petrović, S., & Marić, S. (2015). Pearson’s or Spearman’s correlation coefficient-which one to use? Poljoprivreda, 21(2), 47–54.CrossRef Rebekić, A., Lončarić, Z., Petrović, S., & Marić, S. (2015). Pearson’s or Spearman’s correlation coefficient-which one to use? Poljoprivreda, 21(2), 47–54.CrossRef
79.
Zurück zum Zitat Abdi, H. (2007). The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics (pp. 508–510). Sage. Abdi, H. (2007). The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics (pp. 508–510). Sage.
80.
Zurück zum Zitat Abdullah, M. B. (1990). On a robust correlation coefficient. Journal of the Royal Statistical Society: Series D (The Statistician), 39(4), 455–460. Abdullah, M. B. (1990). On a robust correlation coefficient. Journal of the Royal Statistical Society: Series D (The Statistician), 39(4), 455–460.
81.
Zurück zum Zitat Puth, M. T., Neuhäuser, M., & Ruxton, G. D. (2015). Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Animal Behaviour, 102, 77–84.CrossRef Puth, M. T., Neuhäuser, M., & Ruxton, G. D. (2015). Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Animal Behaviour, 102, 77–84.CrossRef
82.
Zurück zum Zitat Valencia, D., Lillo, R. E., & Romo, J. (2019). A Kendall correlation coefficient between functional data. Advances in Data Analysis and Classification, 13(4), 1083–1103.MathSciNetMATHCrossRef Valencia, D., Lillo, R. E., & Romo, J. (2019). A Kendall correlation coefficient between functional data. Advances in Data Analysis and Classification, 13(4), 1083–1103.MathSciNetMATHCrossRef
83.
Zurück zum Zitat Gideon, R. A., & Hollister, R. A. (1987). A rank correlation coefficient resistant to outliers. Journal of the American Statistical Association, 82(398), 656–666.MathSciNetMATHCrossRef Gideon, R. A., & Hollister, R. A. (1987). A rank correlation coefficient resistant to outliers. Journal of the American Statistical Association, 82(398), 656–666.MathSciNetMATHCrossRef
84.
Zurück zum Zitat Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.CrossRef Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.CrossRef
85.
Zurück zum Zitat Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304.CrossRef Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304.CrossRef
86.
Zurück zum Zitat Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.CrossRef Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.CrossRef
87.
Zurück zum Zitat Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. In Generalized principal component analysis (pp. 25–62). Springer. Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. In Generalized principal component analysis (pp. 25–62). Springer.
88.
Zurück zum Zitat Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.MathSciNetMATHCrossRef Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.MathSciNetMATHCrossRef
89.
Zurück zum Zitat Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, 329–358. Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, 329–358.
90.
Zurück zum Zitat Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 scientific impact measures. PLoS ONE, 4(6), e6022.CrossRef Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 scientific impact measures. PLoS ONE, 4(6), e6022.CrossRef
91.
Zurück zum Zitat Izenman, A. J. (2013). Linear discriminant analysis. In Modern multivariate statistical techniques (pp. 237–280). Springer. Izenman, A. J. (2013). Linear discriminant analysis. In Modern multivariate statistical techniques (pp. 237–280). Springer.
92.
Zurück zum Zitat Xanthopoulos, P., Pardalos, P. M., & Trafalis, T. B. (2013). Linear discriminant analysis. In Robust data mining (pp. 27–33). Springer. Xanthopoulos, P., Pardalos, P. M., & Trafalis, T. B. (2013). Linear discriminant analysis. In Robust data mining (pp. 27–33). Springer.
93.
Zurück zum Zitat Ioffe, S. (2006, May). Probabilistic linear discriminant analysis. In European Conference on Computer Vision (pp. 531–542). Springer. Ioffe, S. (2006, May). Probabilistic linear discriminant analysis. In European Conference on Computer Vision (pp. 531–542). Springer.
94.
Zurück zum Zitat Prince, S. J., & Elder, J. H. (2007, October). Probabilistic linear discriminant analysis for inferences about identity. In 2007 IEEE 11th international conference on computer vision (pp. 1–8). IEEE. Prince, S. J., & Elder, J. H. (2007, October). Probabilistic linear discriminant analysis for inferences about identity. In 2007 IEEE 11th international conference on computer vision (pp. 1–8). IEEE.
95.
Zurück zum Zitat Sharma, A., & Paliwal, K. K. (2015). Linear discriminant analysis for the small sample size problem: An overview. International Journal of Machine Learning and Cybernetics, 6(3), 443–454.CrossRef Sharma, A., & Paliwal, K. K. (2015). Linear discriminant analysis for the small sample size problem: An overview. International Journal of Machine Learning and Cybernetics, 6(3), 443–454.CrossRef
96.
Zurück zum Zitat Li, M., & Yuan, B. (2005). 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527–532.CrossRef Li, M., & Yuan, B. (2005). 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527–532.CrossRef
97.
Zurück zum Zitat Park, C. H., & Park, H. (2008). A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition, 41(3), 1083–1097.MATHCrossRef Park, C. H., & Park, H. (2008). A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition, 41(3), 1083–1097.MATHCrossRef
98.
Zurück zum Zitat Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.CrossRef Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.CrossRef
99.
Zurück zum Zitat Chang, H., & Yeung, D. Y. (2006). Robust locally linear embedding. Pattern Recognition, 39(6), 1053–1065.MATHCrossRef Chang, H., & Yeung, D. Y. (2006). Robust locally linear embedding. Pattern Recognition, 39(6), 1053–1065.MATHCrossRef
100.
Zurück zum Zitat Ridder, D. D., Kouropteva, O., Okun, O., Pietikäinen, M., & Duin, R. P. (2003). Supervised locally linear embedding. In Artificial neural networks and neural information processing—ICANN/ICONIP 2003 (pp. 333–341). Springer. Ridder, D. D., Kouropteva, O., Okun, O., Pietikäinen, M., & Duin, R. P. (2003). Supervised locally linear embedding. In Artificial neural networks and neural information processing—ICANN/ICONIP 2003 (pp. 333–341). Springer.
101.
Zurück zum Zitat Kouropteva, O., Okun, O., & Pietikäinen, M. (2005). Incremental locally linear embedding. Pattern recognition, 38(10), 1764–1767.MATHCrossRef Kouropteva, O., Okun, O., & Pietikäinen, M. (2005). Incremental locally linear embedding. Pattern recognition, 38(10), 1764–1767.MATHCrossRef
102.
Zurück zum Zitat Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10), 5591–5596.MathSciNetMATHCrossRef Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10), 5591–5596.MathSciNetMATHCrossRef
103.
Zurück zum Zitat Pan, Y., Ge, S. S., & Al Mamun, A. (2009). Weighted locally linear embedding for dimension reduction. Pattern Recognition, 42(5), 798–811.MATHCrossRef Pan, Y., Ge, S. S., & Al Mamun, A. (2009). Weighted locally linear embedding for dimension reduction. Pattern Recognition, 42(5), 798–811.MATHCrossRef
104.
Zurück zum Zitat Zhang, S. Q. (2009). Enhanced supervised locally linear embedding. Pattern Recognition Letters, 30(13), 1208–1218.CrossRef Zhang, S. Q. (2009). Enhanced supervised locally linear embedding. Pattern Recognition Letters, 30(13), 1208–1218.CrossRef
105.
Zurück zum Zitat Wang, J. (2012). Locally linear embedding. In Geometric Structure of High-Dimensional Data and Dimensionality Reduction (pp. 203–220). Springer. Wang, J. (2012). Locally linear embedding. In Geometric Structure of High-Dimensional Data and Dimensionality Reduction (pp. 203–220). Springer.
106.
Zurück zum Zitat Wang, X., Zheng, Y., Zhao, Z., & Wang, J. (2015). Bearing fault diagnosis based on statistical locally linear embedding. Sensors, 15(7), 16225–16247.CrossRef Wang, X., Zheng, Y., Zhao, Z., & Wang, J. (2015). Bearing fault diagnosis based on statistical locally linear embedding. Sensors, 15(7), 16225–16247.CrossRef
107.
Zurück zum Zitat Kouropteva, O., Okun, O., & Pietikäinen, M. (2003, June). Supervised locally linear embedding algorithm for pattern recognition. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 386–394). Springer. Kouropteva, O., Okun, O., & Pietikäinen, M. (2003, June). Supervised locally linear embedding algorithm for pattern recognition. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 386–394). Springer.
108.
Zurück zum Zitat Chen, J., & Ma, Z. (2011). Locally linear embedding: A review. International Journal of Pattern Recognition and Artificial Intelligence, 25(07), 985–1008.MathSciNetCrossRef Chen, J., & Ma, Z. (2011). Locally linear embedding: A review. International Journal of Pattern Recognition and Artificial Intelligence, 25(07), 985–1008.MathSciNetCrossRef
109.
Zurück zum Zitat Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.MATHCrossRef Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.MATHCrossRef
110.
Zurück zum Zitat Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing systems, 14. Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing systems, 14.
111.
Zurück zum Zitat Zhu, H., Sun, K., & Koniusz, P. (2021). Contrastive laplacian eigenmaps. Advances in Neural Information Processing Systems, 34, 5682–5695. Zhu, H., Sun, K., & Koniusz, P. (2021). Contrastive laplacian eigenmaps. Advances in Neural Information Processing Systems, 34, 5682–5695.
112.
Zurück zum Zitat Li, B., Li, Y. R., & Zhang, X. L. (2019). A survey on Laplacian eigenmaps based manifold learning methods. Neurocomputing, 335, 336–351.CrossRef Li, B., Li, Y. R., & Zhang, X. L. (2019). A survey on Laplacian eigenmaps based manifold learning methods. Neurocomputing, 335, 336–351.CrossRef
113.
Zurück zum Zitat Tu, S. T., Chen, J. Y., Yang, W., & Sun, H. (2011). Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 50(1), 170–179.CrossRef Tu, S. T., Chen, J. Y., Yang, W., & Sun, H. (2011). Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 50(1), 170–179.CrossRef
114.
Zurück zum Zitat Sprekeler, H. (2011). On the relation of slow feature analysis and laplacian eigenmaps. Neural Computation, 23(12), 3287–3302.MathSciNetMATHCrossRef Sprekeler, H. (2011). On the relation of slow feature analysis and laplacian eigenmaps. Neural Computation, 23(12), 3287–3302.MathSciNetMATHCrossRef
115.
Zurück zum Zitat Jia, P., Yin, J., Huang, X., & Hu, D. (2009). Incremental Laplacian eigenmaps by preserving adjacent information between data points. Pattern Recognition Letters, 30(16), 1457–1463.CrossRef Jia, P., Yin, J., Huang, X., & Hu, D. (2009). Incremental Laplacian eigenmaps by preserving adjacent information between data points. Pattern Recognition Letters, 30(16), 1457–1463.CrossRef
116.
Zurück zum Zitat Lewandowski, M., Martinez-del-Rincon, J., Makris, D., & Nebel, J. C. (2010, August). Temporal extension of laplacian eigenmaps for unsupervised dimensionality reduction of time series. In 2010 20th International Conference on Pattern Recognition (pp. 161–164). IEEE. Lewandowski, M., Martinez-del-Rincon, J., Makris, D., & Nebel, J. C. (2010, August). Temporal extension of laplacian eigenmaps for unsupervised dimensionality reduction of time series. In 2010 20th International Conference on Pattern Recognition (pp. 161–164). IEEE.
117.
Zurück zum Zitat Ye, X., Li, H., Imakura, A., & Sakurai, T. (2020). An oversampling framework for imbalanced classification based on Laplacian eigenmaps. Neurocomputing, 399, 107–116.CrossRef Ye, X., Li, H., Imakura, A., & Sakurai, T. (2020). An oversampling framework for imbalanced classification based on Laplacian eigenmaps. Neurocomputing, 399, 107–116.CrossRef
118.
Zurück zum Zitat Lewandowski, M., Makris, D., Velastin, S. A., & Nebel, J. C. (2013). Structural Laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Transactions on Cybernetics, 44(6), 936–949.CrossRef Lewandowski, M., Makris, D., Velastin, S. A., & Nebel, J. C. (2013). Structural Laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Transactions on Cybernetics, 44(6), 936–949.CrossRef
119.
Zurück zum Zitat Gerber, S., Tasdizen, T., & Whitaker, R. (2007, June). Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian eigenmaps. In Proceedings of the 24th International Conference on Machine Learning (pp. 281–288). Gerber, S., Tasdizen, T., & Whitaker, R. (2007, June). Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian eigenmaps. In Proceedings of the 24th International Conference on Machine Learning (pp. 281–288).
120.
Zurück zum Zitat Liu, F., Zhang, W., & Gu, S. (2016). Local linear Laplacian eigenmaps: A direct extension of LLE. Pattern Recognition Letters, 75, 30–35.CrossRef Liu, F., Zhang, W., & Gu, S. (2016). Local linear Laplacian eigenmaps: A direct extension of LLE. Pattern Recognition Letters, 75, 30–35.CrossRef
121.
Zurück zum Zitat Wang, J. (2012). Laplacian eigenmaps. In Geometric Structure of High-Dimensional Data and Dimensionality Reduction (pp. 235–247). Springer. Wang, J. (2012). Laplacian eigenmaps. In Geometric Structure of High-Dimensional Data and Dimensionality Reduction (pp. 235–247). Springer.
122.
Zurück zum Zitat Yu, H., Ding, M., & Zhang, X. (2019). Laplacian eigenmaps network-based nonlocal means method for MR image denoising. Sensors, 19(13), 2918.CrossRef Yu, H., Ding, M., & Zhang, X. (2019). Laplacian eigenmaps network-based nonlocal means method for MR image denoising. Sensors, 19(13), 2918.CrossRef
123.
Zurück zum Zitat Chen, C., Zhang, L., Bu, J., Wang, C., & Chen, W. (2010). Constrained Laplacian Eigenmap for dimensionality reduction. Neurocomputing, 73(4–6), 951–958.CrossRef Chen, C., Zhang, L., Bu, J., Wang, C., & Chen, W. (2010). Constrained Laplacian Eigenmap for dimensionality reduction. Neurocomputing, 73(4–6), 951–958.CrossRef
124.
Zurück zum Zitat Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., & Young Choi, J. (2017). Attentional correlation filter network for adaptive visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4807–4816). Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., & Young Choi, J. (2017). Attentional correlation filter network for adaptive visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4807–4816).
125.
Zurück zum Zitat Lawley, D. N., & Maxwell, A. E. (1962). Factor analysis as a statistical method. Journal of the Royal Statistical Society. Series D (The Statistician), 12(3), 209–229. Lawley, D. N., & Maxwell, A. E. (1962). Factor analysis as a statistical method. Journal of the Royal Statistical Society. Series D (The Statistician), 12(3), 209–229.
126.
Zurück zum Zitat Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191–205.CrossRef Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191–205.CrossRef
127.
Zurück zum Zitat Stone, J. V. (2002). Independent component analysis: An introduction. Trends in Cognitive Sciences, 6(2), 59–64.CrossRef Stone, J. V. (2002). Independent component analysis: An introduction. Trends in Cognitive Sciences, 6(2), 59–64.CrossRef
128.
Zurück zum Zitat Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314.MATHCrossRef Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314.MATHCrossRef
129.
Zurück zum Zitat Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRef Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRef
130.
Zurück zum Zitat Zhang, D. (2019). Wavelet transform. In Fundamentals of image data mining (pp. 35–44). Springer. Zhang, D. (2019). Wavelet transform. In Fundamentals of image data mining (pp. 35–44). Springer.
131.
Zurück zum Zitat Bentley, P. M., & McDonnell, J. T. E. (1994). Wavelet transforms: An introduction. Electronics & Communication Engineering Journal, 6(4), 175–186.CrossRef Bentley, P. M., & McDonnell, J. T. E. (1994). Wavelet transforms: An introduction. Electronics & Communication Engineering Journal, 6(4), 175–186.CrossRef
132.
Zurück zum Zitat Antonini, M., Barlaud, M., Mathieu, P., & Daubechies, I. (1992). Image coding using wavelet transform. IEEE Transactions on Image Processing, 1(2), 205–220.CrossRef Antonini, M., Barlaud, M., Mathieu, P., & Daubechies, I. (1992). Image coding using wavelet transform. IEEE Transactions on Image Processing, 1(2), 205–220.CrossRef
133.
Zurück zum Zitat Flandrin, P., Rilling, G., & Goncalves, P. (2004). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2), 112–114.CrossRef Flandrin, P., Rilling, G., & Goncalves, P. (2004). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2), 112–114.CrossRef
134.
Zurück zum Zitat Lei, Y., He, Z., & Zi, Y. (2009). Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 23(4), 1327–1338.CrossRef Lei, Y., He, Z., & Zi, Y. (2009). Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 23(4), 1327–1338.CrossRef
135.
Zurück zum Zitat Cao, J., Li, Z., & Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications, 519, 127–139.CrossRef Cao, J., Li, Z., & Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications, 519, 127–139.CrossRef
136.
Zurück zum Zitat Kou, Z., Yang, F., Wu, J., & Li, T. (2020). Application of ICEEMDAN energy entropy and AFSA-SVM for fault diagnosis of hoist sheave bearing. Entropy, 22(12), 1347.CrossRef Kou, Z., Yang, F., Wu, J., & Li, T. (2020). Application of ICEEMDAN energy entropy and AFSA-SVM for fault diagnosis of hoist sheave bearing. Entropy, 22(12), 1347.CrossRef
137.
Zurück zum Zitat Lu, H., Xi, D., Ma, X., Zheng, S., Huang, C., & Wei, N. (2022). Hybrid machine learning models for predicting short-term wave energy flux. Ocean Engineering, 264, 112258. Lu, H., Xi, D., Ma, X., Zheng, S., Huang, C., & Wei, N. (2022). Hybrid machine learning models for predicting short-term wave energy flux. Ocean Engineering, 264, 112258.
138.
Zurück zum Zitat Bagheri, A., Ozbulut, O. E., & Harris, D. K. (2018). Structural system identification based on variational mode decomposition. Journal of Sound and Vibration, 417, 182–197.CrossRef Bagheri, A., Ozbulut, O. E., & Harris, D. K. (2018). Structural system identification based on variational mode decomposition. Journal of Sound and Vibration, 417, 182–197.CrossRef
139.
Zurück zum Zitat Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1–4), 95–126.CrossRef Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1–4), 95–126.CrossRef
140.
Zurück zum Zitat Cao, H., Song, Y., Li, Y., Li, R., Shi, H., Yu, J., … & Wang, C. (2018). Reduction of moving target time-of-flight measurement uncertainty in femtosecond laser ranging by singular spectrum analysis based filtering. Applied Sciences, 8(9), 1625.CrossRef Cao, H., Song, Y., Li, Y., Li, R., Shi, H., Yu, J., … & Wang, C. (2018). Reduction of moving target time-of-flight measurement uncertainty in femtosecond laser ranging by singular spectrum analysis based filtering. Applied Sciences, 8(9), 1625.CrossRef
141.
Zurück zum Zitat Peterson, L. E. (2009). K-nearest Neighbor. Scholarpedia, 4(2), 1883.CrossRef Peterson, L. E. (2009). K-nearest Neighbor. Scholarpedia, 4(2), 1883.CrossRef
142.
Zurück zum Zitat Sattari, M. T., Rezazadeh-Joudi, A., & Kusiak, A. (2017). Assessment of different methods for estimation of missing data in precipitation studies. Hydrology Research, 48(4), 1032–1044.CrossRef Sattari, M. T., Rezazadeh-Joudi, A., & Kusiak, A. (2017). Assessment of different methods for estimation of missing data in precipitation studies. Hydrology Research, 48(4), 1032–1044.CrossRef
143.
Zurück zum Zitat Zhang, L., Xie, Y., Xidao, L., & Zhang, X. (2018, May). Multi-source heterogeneous data fusion. In 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 47–51). IEEE. Zhang, L., Xie, Y., Xidao, L., & Zhang, X. (2018, May). Multi-source heterogeneous data fusion. In 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 47–51). IEEE.
144.
Zurück zum Zitat Zhang, Y. (2021). Research on multi-source heterogeneous data fusion method for landslide monitoring. Chang’an University. Zhang, Y. (2021). Research on multi-source heterogeneous data fusion method for landslide monitoring. Chang’an University.
Metadaten
Titel
Data Preprocessing Technology in Pipeline Health Monitoring
verfasst von
Hongfang Lu
Zhao-Dong Xu
Tom Iseley
Haoyan Peng
Lingdi Fu
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-6798-6_5