Skip to main content

2024 | OriginalPaper | Buchkapitel

DDoS Cyber-Attacks Detection-Based Hybrid CNN-LSTM

verfasst von : Thura Jabbar Khaleel, Nadia Adnan Shiltagh

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protecting software-defined networking (SDN) against cyber-attacks has become crucial in an expanding digital threat environment. Distributed Denial-of-Service (DDoS) attacks are risky since they may seriously interrupt operations. To mitigate these risks, this study introduces an anomaly detection method that utilizes a hybrid convolutional and short-term memory (CNN-LSTM) deep neural network. This model merges the CNN's ability to automatically extract spatial features with the LSTM's proficiency in sequence modeling, thereby enhancing the detection of anomalies in network traffic metadata. The model also integrates an autoencoder structure to facilitate representation learning and reduce dimensionality. The model's effectiveness was tested using publicly accessible SDN datasets, and the results were remarkable. The model identified DDoS attacks with an accuracy rate of over 99%, surpassing the performance of previous shallow learning models. Moreover, the model proved highly adaptable, successfully detecting attacks across various data samples. This deep learning-based detection system is a significant advancement, providing precise and efficient analytics that bolster real-time cybersecurity monitoring. However, it's crucial to continue research in deployment, interpretability, and the potential of combinatorial learning with other advanced technologies. We can only fully harness the great potential of artificial intelligence for adequate cyber protection by looking into these areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Simalango, M.F., Kang, M.Y., Oh, S.: Towards constraint-based high performance cloud system in the process of cloud computing adoption in an organization. ArXiv (2010) Simalango, M.F., Kang, M.Y., Oh, S.: Towards constraint-based high performance cloud system in the process of cloud computing adoption in an organization. ArXiv (2010)
7.
Zurück zum Zitat Khuphiran, P., Leelaprute, P., Uthayopas, P., Ichikawa, K., Watanakeesuntorn, W.: Performance comparison of machine learning models for DDoS attacks detection. In: 2018 22nd International Computer Science and Engineering Conference, ICSEC 2018 (2018). https://doi.org/10.1109/ICSEC.2018.8712757 Khuphiran, P., Leelaprute, P., Uthayopas, P., Ichikawa, K., Watanakeesuntorn, W.: Performance comparison of machine learning models for DDoS attacks detection. In: 2018 22nd International Computer Science and Engineering Conference, ICSEC 2018 (2018). https://​doi.​org/​10.​1109/​ICSEC.​2018.​8712757
10.
Zurück zum Zitat Panda, M., Patra, M.: Network Intrusion Detection Using Naïve Bayes (2007) Panda, M., Patra, M.: Network Intrusion Detection Using Naïve Bayes (2007)
18.
Zurück zum Zitat Yildiz, B.: Coding Theory Lecture Notes By Yildiz, pp. 1–63 (2011) Yildiz, B.: Coding Theory Lecture Notes By Yildiz, pp. 1–63 (2011)
27.
Zurück zum Zitat Al-asadi,T.A., Obaid, A.J.: An efficient web usage mining algorithm based on log file data. J. Theoret. Appl. Inf. Technol. 16, 92(2), 215–224 (2016) Al-asadi,T.A., Obaid, A.J.: An efficient web usage mining algorithm based on log file data. J. Theoret. Appl. Inf. Technol. 16, 92(2), 215–224 (2016)
Metadaten
Titel
DDoS Cyber-Attacks Detection-Based Hybrid CNN-LSTM
verfasst von
Thura Jabbar Khaleel
Nadia Adnan Shiltagh
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_41