Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2021

08.04.2021

Development of Ni44Ti35Zr15Cu6 Quaternary Shape Memory Alloy: Experimental and Density Functional Theory Studies

verfasst von: Tapasendra Adhikary, Bharat Charan Goud Marupalli, Gourab Bhattacharya, Akash Oraon, Banty Kumar, Shampa Aich

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of Zr and Cu additions on the phase stability, microstructure and martensitic transformation temperature of binary NiTi alloys has been investigated with a combined approach of experimental measurements and first principle density functional theory calculations. In this work, multilayer Ni/Ti/Zr/Cu films have been deposited using the magnetron sputtering on Si substrates at room temperature and subsequently annealed at 350 °C for complete inter-diffusion of multilayers to create amorphous phase followed by high temperature annealing at 600 °C for 5 min to achieve Ni44Ti35Zr15Cu6 shape memory alloys. The high temperature annealing is required for the formation of crystalline phases. The x-ray diffraction pattern of the film annealed at 600 °C indicated the presence of martensite phase. The surface and interface studies were performed focusing on morphology and interlayer diffusion over the nano-level structure at 600 °C. The elemental mapping showed near-uniform distribution of constituent elements after annealing. Atomic force microscopy results showed the increase in surface roughness at annealing temperature of 600 °C due to grain growth. The formation energy results indicate that the Zr and Cu additions to NiTi favor the formation of monoclinic B19’ phase. The differential scanning calorimetry results show that the martensitic transformation temperature increases with Zr and Cu additions. Nanoindentation studies for Ni44Ti35Zr15Cu6 films showed an increase in depth recovery for the crystalline film. A theoretical model has been used, to determine the hysteresis of shape memory alloys as predicted by the geometric nonlinear theory of martensite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Duerig, A. Pelton and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273, p 149–160.CrossRef T. Duerig, A. Pelton and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273, p 149–160.CrossRef
2.
Zurück zum Zitat C. Naresh, P.S. Bose and C.S. Rao, Shape Memory Alloys: A State of Art Review, IOP Conf. Ser. Mater. Sci. Eng., 2016, 149, p 1–13.CrossRef C. Naresh, P.S. Bose and C.S. Rao, Shape Memory Alloys: A State of Art Review, IOP Conf. Ser. Mater. Sci. Eng., 2016, 149, p 1–13.CrossRef
3.
Zurück zum Zitat B. Christoph, C. Chluba, C. Zamponi, E. Quandt and R.L. Miranda, Fabrication and Characterization of Freestanding NiTi Based Thin Film Materials for Shape Memory Micro-actuator Applications, Shape Memory Superelast., 2019, 5, p 327–335.CrossRef B. Christoph, C. Chluba, C. Zamponi, E. Quandt and R.L. Miranda, Fabrication and Characterization of Freestanding NiTi Based Thin Film Materials for Shape Memory Micro-actuator Applications, Shape Memory Superelast., 2019, 5, p 327–335.CrossRef
4.
Zurück zum Zitat A. Behera, D.K. Rajak, R. Kolahchi, M.L. Scutaru and C.I. Pruncu, Current Global Scenario of Sputtered Deposited NiTi Smart Systems, J. Mater. Res. Technol., 2020, 9, p 14582–14598.CrossRef A. Behera, D.K. Rajak, R. Kolahchi, M.L. Scutaru and C.I. Pruncu, Current Global Scenario of Sputtered Deposited NiTi Smart Systems, J. Mater. Res. Technol., 2020, 9, p 14582–14598.CrossRef
5.
Zurück zum Zitat H. Cho, H.Y. Kim and S. Miyazaki, Alloying Process of Sputter-Deposited Ti/Ni Multilayer Thin Films, Mater. Sci. Eng. A, 2006, 438, p 699–702.CrossRef H. Cho, H.Y. Kim and S. Miyazaki, Alloying Process of Sputter-Deposited Ti/Ni Multilayer Thin Films, Mater. Sci. Eng. A, 2006, 438, p 699–702.CrossRef
6.
Zurück zum Zitat A.J. Cavaleiro, R.J. Santos, A.S. Ramos and M.T. Vieira, In-situ Thermal Evolution of Ni/Ti Multilayer Thin Films, Intermetallics, 2014, 51, p 11–17.CrossRef A.J. Cavaleiro, R.J. Santos, A.S. Ramos and M.T. Vieira, In-situ Thermal Evolution of Ni/Ti Multilayer Thin Films, Intermetallics, 2014, 51, p 11–17.CrossRef
7.
Zurück zum Zitat A. Behera and S. Aich, Characterisation and Properties of Magnetron Sputtered Nanoscale Bi-layered Ni/Ti Thin Films and Effect of Annealing, Surf. Interface Anal., 2015, 47, p 805–814.CrossRef A. Behera and S. Aich, Characterisation and Properties of Magnetron Sputtered Nanoscale Bi-layered Ni/Ti Thin Films and Effect of Annealing, Surf. Interface Anal., 2015, 47, p 805–814.CrossRef
8.
Zurück zum Zitat A. Behera, S. Aich, A. Behera and A. Sahu, Processing and Characterization of Magnetron Sputtered Ni/Ti Thin Film and Their Annealing Behaviour to Induce Shape Memory Effect, Mater. Today Proc., 2015, 2, p 1183–1192.CrossRef A. Behera, S. Aich, A. Behera and A. Sahu, Processing and Characterization of Magnetron Sputtered Ni/Ti Thin Film and Their Annealing Behaviour to Induce Shape Memory Effect, Mater. Today Proc., 2015, 2, p 1183–1192.CrossRef
9.
Zurück zum Zitat A. Behera, R. Suman, S. Aich and S.S. Mohapatra, Sputter-Deposited Ni/Ti Double-Bilayer Thin Film and the Effect of Intermetallics During Annealing, Surf. Interface Anal., 2017, 49, p 620–629.CrossRef A. Behera, R. Suman, S. Aich and S.S. Mohapatra, Sputter-Deposited Ni/Ti Double-Bilayer Thin Film and the Effect of Intermetallics During Annealing, Surf. Interface Anal., 2017, 49, p 620–629.CrossRef
10.
Zurück zum Zitat G. Fuentes, J. Maria, P. Gümpel and J. Strittmatter, Phase Change Behavior of Nitinol Shape Memory Alloys, Adv. Eng. Mater, 2002, 4, p 437–452.CrossRef G. Fuentes, J. Maria, P. Gümpel and J. Strittmatter, Phase Change Behavior of Nitinol Shape Memory Alloys, Adv. Eng. Mater, 2002, 4, p 437–452.CrossRef
11.
Zurück zum Zitat M. Khan, A.N. Khan, S.H.I. Jaffery, L. Ali, and A. Mubashar, Improvement in the Mechanical Properties of High Temperature Shape Memory Alloy (Ti50Ni25Pd25) by Copper Addition. Adv. Mater. Sci. Eng., 2015, 2015 M. Khan, A.N. Khan, S.H.I. Jaffery, L. Ali, and A. Mubashar, Improvement in the Mechanical Properties of High Temperature Shape Memory Alloy (Ti50Ni25Pd25) by Copper Addition. Adv. Mater. Sci. Eng.2015, 2015
12.
Zurück zum Zitat S.F. Hsieh and S.K. Wu, A study on Lattice Parameters of Martensite in Ti50.5−xNi495Zrx Shape Memory Alloys, J. Alloys Compd, 1998, 270, p 237–241.CrossRef S.F. Hsieh and S.K. Wu, A study on Lattice Parameters of Martensite in Ti50.5−xNi495Zrx Shape Memory Alloys, J. Alloys Compd, 1998, 270, p 237–241.CrossRef
13.
Zurück zum Zitat D.R. Angst, P.E. Thoma and M.Y. Kao, The effect of Hafnium Content on the Transformation Temperatures of Ni49Ti51-xHfx Shape Memory Alloys, J. Phys. IV, 1995, 5, p 747–752. D.R. Angst, P.E. Thoma and M.Y. Kao, The effect of Hafnium Content on the Transformation Temperatures of Ni49Ti51-xHfx Shape Memory Alloys, J. Phys. IV, 1995, 5, p 747–752.
14.
Zurück zum Zitat T.E. Buchheit, D.F. Susan, J.E. Massad, J.R. McElhanon and R.D. Noebe, Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys, Metall. Mater Trans A, 2016, 47, p 1587–1599.CrossRef T.E. Buchheit, D.F. Susan, J.E. Massad, J.R. McElhanon and R.D. Noebe, Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys, Metall. Mater Trans A, 2016, 47, p 1587–1599.CrossRef
15.
Zurück zum Zitat Z.W. Feng, B.D. Gao, J.B. Wang, D.F. Qian and Y.X. Liu, Influence of Zr Additions on Shape-Memory Effect and Mechanical Properties of Ni-Rich NiTi Alloys, Mater. Sci. Forum, 2001, 394, p 365–368. Z.W. Feng, B.D. Gao, J.B. Wang, D.F. Qian and Y.X. Liu, Influence of Zr Additions on Shape-Memory Effect and Mechanical Properties of Ni-Rich NiTi Alloys, Mater. Sci. Forum, 2001, 394, p 365–368.
16.
Zurück zum Zitat A.P. Ramos, W.B.D. Castro, J.D. Costa, and R.A.C.D. Santana, Influence of Zirconium Percentage on Microhardness and Corrosion Resistance of Ti50Ni50−xZrx Shape Memory Alloys. Mater. Res., 2019, 22 A.P. Ramos, W.B.D. Castro, J.D. Costa, and R.A.C.D. Santana, Influence of Zirconium Percentage on Microhardness and Corrosion Resistance of Ti50Ni50−xZrx Shape Memory Alloys. Mater. Res., 2019, 22
17.
Zurück zum Zitat M. Carl, J.D. Smith, B.V. Doren and M.L. Young, Effect of Ni-Content on the Transformation Temperatures in NiTi-20 at% Zr High Temperature Shape Memory Alloys, Metals, 2017, 7, p 511.CrossRef M. Carl, J.D. Smith, B.V. Doren and M.L. Young, Effect of Ni-Content on the Transformation Temperatures in NiTi-20 at% Zr High Temperature Shape Memory Alloys, Metals, 2017, 7, p 511.CrossRef
18.
Zurück zum Zitat A. Evirgen, I. Karaman, J. Pons, R. Santamarta and R.D. Noebe, Role of Nano-Precipitation on the Microstructure and Shape Memory Characteristics of a New Ni50.3Ti34.7Zr15 Shape Memory Alloy, Mater. Sci. Eng. A, 2016, 655, p 193–203.CrossRef A. Evirgen, I. Karaman, J. Pons, R. Santamarta and R.D. Noebe, Role of Nano-Precipitation on the Microstructure and Shape Memory Characteristics of a New Ni50.3Ti34.7Zr15 Shape Memory Alloy, Mater. Sci. Eng. A, 2016, 655, p 193–203.CrossRef
19.
Zurück zum Zitat A. Evirgen, I. Karaman, R.D. Noebe, R. Santamarta and J. Pons, Effect of Precipitation on the Microstructure and the Shape Memory Response of the Ni50.3Ti29.7Zr20 High Temperature Shape Memory Alloy, Scr. Mater., 2013, 69, p 354–357.CrossRef A. Evirgen, I. Karaman, R.D. Noebe, R. Santamarta and J. Pons, Effect of Precipitation on the Microstructure and the Shape Memory Response of the Ni50.3Ti29.7Zr20 High Temperature Shape Memory Alloy, Scr. Mater., 2013, 69, p 354–357.CrossRef
20.
Zurück zum Zitat F.J. Gil and J.A. Planell, Effect of Copper Addition on the Superelastic Behavior of Ni-Ti Shape Memory Alloys for Orthodontic Applications, J. Biomed. Mater. Res. A, 1999, 48, p 682–688.CrossRef F.J. Gil and J.A. Planell, Effect of Copper Addition on the Superelastic Behavior of Ni-Ti Shape Memory Alloys for Orthodontic Applications, J. Biomed. Mater. Res. A, 1999, 48, p 682–688.CrossRef
21.
Zurück zum Zitat Y. Xu, X. Huang and A.G. Ramirez, Crystallization of Amorphous NiTiCu Thin Films, J. Alloys Compds, 2009, 480, p 13–16.CrossRef Y. Xu, X. Huang and A.G. Ramirez, Crystallization of Amorphous NiTiCu Thin Films, J. Alloys Compds, 2009, 480, p 13–16.CrossRef
22.
Zurück zum Zitat N.V. Gelli, M.S. Bobji and S. Mohan, Effect of Contact Stresses on Shape Recovery of NiTiCu Thin Films, Thin Solid Films, 2014, 564, p 306–313.CrossRef N.V. Gelli, M.S. Bobji and S. Mohan, Effect of Contact Stresses on Shape Recovery of NiTiCu Thin Films, Thin Solid Films, 2014, 564, p 306–313.CrossRef
23.
Zurück zum Zitat H.E. Karaca, E. Acar, G.S. Ded, S.M. Saghaian, B. Basaran, H. Tobe, M. Kok, H.J. Maier, R.D. Noebe, Y.I. Chumlyakov and Y.I. Chumlyakov, Microstructure and Transformation Related Behaviors of a Ni45.3Ti29.7Hf20Cu5 High Temperature Shape Memory Alloy, Mater. Sci. Eng. A, 2015, 627, p 82–94.CrossRef H.E. Karaca, E. Acar, G.S. Ded, S.M. Saghaian, B. Basaran, H. Tobe, M. Kok, H.J. Maier, R.D. Noebe, Y.I. Chumlyakov and Y.I. Chumlyakov, Microstructure and Transformation Related Behaviors of a Ni45.3Ti29.7Hf20Cu5 High Temperature Shape Memory Alloy, Mater. Sci. Eng. A, 2015, 627, p 82–94.CrossRef
24.
Zurück zum Zitat K. Chastaing, P. Vermaut, P. Ochin, C. Segui, J.Y. Laval and R. Portier, Effect of Cu and Hf Additions on NiTi Martensitic Transformation, Maters. Sci. Eng. A, 2006, 438, p 661–665.CrossRef K. Chastaing, P. Vermaut, P. Ochin, C. Segui, J.Y. Laval and R. Portier, Effect of Cu and Hf Additions on NiTi Martensitic Transformation, Maters. Sci. Eng. A, 2006, 438, p 661–665.CrossRef
25.
Zurück zum Zitat S. Kibey, H. Sehitoglu and D.D. Johnson, Energy Landscape for Martensitic Phase Transformation in Shape Memory NiTi, Acta Mater., 2009, 57, p 1624–1629.CrossRef S. Kibey, H. Sehitoglu and D.D. Johnson, Energy Landscape for Martensitic Phase Transformation in Shape Memory NiTi, Acta Mater., 2009, 57, p 1624–1629.CrossRef
26.
Zurück zum Zitat K.G. Vishnu and A. Strachan, Phase Stability and Transformations in NiTi from Density Functional Theory Calculations, Acta Mater, 2010, 58, p 745–752.CrossRef K.G. Vishnu and A. Strachan, Phase Stability and Transformations in NiTi from Density Functional Theory Calculations, Acta Mater, 2010, 58, p 745–752.CrossRef
27.
Zurück zum Zitat A.C. Stott, P.B. Abel, C. DellaCorte, S.V. Pepper and D.A. Dixon, Computational Studies of the NiTi alloy System: Bulk, Supercell, and Surface Calculations, MRS Online Proc. Lib. Arch., 2011, 10, p 1295. A.C. Stott, P.B. Abel, C. DellaCorte, S.V. Pepper and D.A. Dixon, Computational Studies of the NiTi alloy System: Bulk, Supercell, and Surface Calculations, MRS Online Proc. Lib. Arch., 2011, 10, p 1295.
28.
Zurück zum Zitat G. Bozzolo, R.D. Noebe and H.O. Mosca, Site Preference of Ternary Alloying Additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf, J. Alloys Compd., 2005, 389, p 80–94.CrossRef G. Bozzolo, R.D. Noebe and H.O. Mosca, Site Preference of Ternary Alloying Additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf, J. Alloys Compd., 2005, 389, p 80–94.CrossRef
29.
Zurück zum Zitat A. Behera, S. Aich and S. Ghosh, Simulation of Magnetron-Sputtered Ni/Ti Thin Films and Effect of Annealing, Emerg. Mater. Res., 2017, 6, p 254–259. A. Behera, S. Aich and S. Ghosh, Simulation of Magnetron-Sputtered Ni/Ti Thin Films and Effect of Annealing, Emerg. Mater. Res., 2017, 6, p 254–259.
30.
Zurück zum Zitat X. Yang, L. Ma and J. Shang, Martensitic Transformation of Ti50 (Ni50−xCux) and Ni50(Ti50−x Zrx) Shape-Memory Alloys, Sci. Rep., 2019, 9, p 1–8. X. Yang, L. Ma and J. Shang, Martensitic Transformation of Ti50 (Ni50−xCux) and Ni50(Ti50−x Zrx) Shape-Memory Alloys, Sci. Rep., 2019, 9, p 1–8.
31.
Zurück zum Zitat L. Gou, Y. Liu and T.Y. Ng, An Investigation on the Crystal Structures of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Intermetallics, 2014, 53, p 20–25.CrossRef L. Gou, Y. Liu and T.Y. Ng, An Investigation on the Crystal Structures of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Intermetallics, 2014, 53, p 20–25.CrossRef
32.
Zurück zum Zitat Y. Zhang and P.J. Shamberger, Thick Film Ni0.5Mn0.5−xSnx Heusler Alloys by Multi-layer Electrochemical Deposition, Sci. Rep., 2018, 8, p 1–13. Y. Zhang and P.J. Shamberger, Thick Film Ni0.5Mn0.5−xSnx Heusler Alloys by Multi-layer Electrochemical Deposition, Sci. Rep., 2018, 8, p 1–13.
33.
Zurück zum Zitat P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p 864-B871.CrossRef P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p 864-B871.CrossRef
34.
Zurück zum Zitat W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p 1134–1138.CrossRef W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p 1134–1138.CrossRef
35.
Zurück zum Zitat G. Kresse and J. Furthmüller, Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B., 1996, 54, p 11169–11186.CrossRef G. Kresse and J. Furthmüller, Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B., 1996, 54, p 11169–11186.CrossRef
36.
Zurück zum Zitat P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953–17979.CrossRef P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953–17979.CrossRef
37.
Zurück zum Zitat G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, p 1758–1775.CrossRef G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, p 1758–1775.CrossRef
38.
Zurück zum Zitat J.P. Perdew, K. Burke and M. Ernzerhof, Perdew, Burke, and Ernzerhof Reply, Phys. Rev. Lett., 1998, 80, p 891.CrossRef J.P. Perdew, K. Burke and M. Ernzerhof, Perdew, Burke, and Ernzerhof Reply, Phys. Rev. Lett., 1998, 80, p 891.CrossRef
39.
Zurück zum Zitat P.E. Blöchl, O. Jepsen and O.K. Andersen, Improved Tetrahedron Method for Brillouin-Zone Integrations, Phys. Rev. B, 1994, 49, p 16223.CrossRef P.E. Blöchl, O. Jepsen and O.K. Andersen, Improved Tetrahedron Method for Brillouin-Zone Integrations, Phys. Rev. B, 1994, 49, p 16223.CrossRef
40.
Zurück zum Zitat H. Cho, H.Y. Kim and S. Miyazaki, Fabrication and Characterization of Ti–Ni Shape Memory Thin Film Using Ti/Ni Multilayer Technique, Sci. Technol. Adv Mater., 2005, 6, p 678–683.CrossRef H. Cho, H.Y. Kim and S. Miyazaki, Fabrication and Characterization of Ti–Ni Shape Memory Thin Film Using Ti/Ni Multilayer Technique, Sci. Technol. Adv Mater., 2005, 6, p 678–683.CrossRef
41.
Zurück zum Zitat H. Tian, D. Schryvers, K.P. Mohanchandra, G.P. Carman and J.V. Humbeeck, Fabrication and Characterization of Functionally Graded Ni–Ti Multilayer Thin Films, Funct. Mater. Lett., 2009, 2, p 61–6642.CrossRef H. Tian, D. Schryvers, K.P. Mohanchandra, G.P. Carman and J.V. Humbeeck, Fabrication and Characterization of Functionally Graded Ni–Ti Multilayer Thin Films, Funct. Mater. Lett., 2009, 2, p 61–6642.CrossRef
42.
Zurück zum Zitat O. Mercier and K.N. Melton, The Substitution of Cu for Ni in NiTi Shape Memory Alloys, Metall. Trans. A, 1979, 10, p 387–389.CrossRef O. Mercier and K.N. Melton, The Substitution of Cu for Ni in NiTi Shape Memory Alloys, Metall. Trans. A, 1979, 10, p 387–389.CrossRef
43.
Zurück zum Zitat X. Deqing, R. Yuan, Y. Zhou, D. Xue, T. Lookman, G. Zhang, X. Ding and J. Sun, Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis, Sci. Rep., 2016, 6, p 1–7. X. Deqing, R. Yuan, Y. Zhou, D. Xue, T. Lookman, G. Zhang, X. Ding and J. Sun, Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis, Sci. Rep., 2016, 6, p 1–7.
44.
Zurück zum Zitat N.M. Rahbar, S. Sanjabi, Y. Jamali and R. Miresmaeili, Martensitic Transformation in Stoichiometric NiMn and Ni-Mn-X Alloys: A First Principles Study, J. Alloys Compd., 2020, 845, p 155978–155988.CrossRef N.M. Rahbar, S. Sanjabi, Y. Jamali and R. Miresmaeili, Martensitic Transformation in Stoichiometric NiMn and Ni-Mn-X Alloys: A First Principles Study, J. Alloys Compd., 2020, 845, p 155978–155988.CrossRef
Metadaten
Titel
Development of Ni44Ti35Zr15Cu6 Quaternary Shape Memory Alloy: Experimental and Density Functional Theory Studies
verfasst von
Tapasendra Adhikary
Bharat Charan Goud Marupalli
Gourab Bhattacharya
Akash Oraon
Banty Kumar
Shampa Aich
Publikationsdatum
08.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05702-7

Weitere Artikel der Ausgabe 5/2021

Journal of Materials Engineering and Performance 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.