Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

Death Prediction by Race in Colorectal Cancer Patients Using Machine Learning Approaches

verfasst von : Frances M. Aponte-Caraballo, Frances Heredia-Negrón, Brenda G. Nieves-Rodriguez, Abiel Roche-Lima

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cancer (CRC) cases have increased worldwide. In USA, African Americans have a higher incidence than other races. In this paper, we aimed to use ML to study specific factors or variables affecting the high incidence of CRC mortality by race after receiving treatments and create models to predict death. We used metastatic CRC Genes Sequencing Studies as data. The patient’s inclusion was based on receiving chemotherapy and grouped by race (White-American and African-American). Five supervised ML methods were implemented for creating model predictions and a Mini-Batched-Normalized-Mutual-Information-Hybrid-Feature-Selection method to extract features including more than 25,000 genes. As a result, the best model was obtained with the Classification-Regression-Trees algorithm (AUC-ROC = 0.91 for White-American, AUC-ROC = 0.89 for African Americans). The features “DBNL gene”, “PIN1P1 gene” and “Days-from-birth” were the most significant variables associated with CRC mortality for White-American, while “IFI44L-gene”, “ART4-gene” and “Sex” were the most relevant related to African-American. In conclusion, these features and models are promising for further analysis and decision-making tools to study CRC from a precision medicine perspective for minority health.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xi, Y., Xu, P.: Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 14 (2021) Xi, Y., Xu, P.: Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 14 (2021)
2.
Zurück zum Zitat Usher-Smith, J.A., Walter, F.M., Emery, J.D., Win, A.K., Griffin, S.J.: Risk prediction models for colorectal cancer: a systematic review 9(1), 13–26 (2016) Usher-Smith, J.A., Walter, F.M., Emery, J.D., Win, A.K., Griffin, S.J.: Risk prediction models for colorectal cancer: a systematic review 9(1), 13–26 (2016)
3.
Zurück zum Zitat Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 71(3), 209–249 (2021)CrossRef Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 71(3), 209–249 (2021)CrossRef
4.
Zurück zum Zitat Yaeger, R., et al.: Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33(1), 125–136 (2018)CrossRef Yaeger, R., et al.: Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33(1), 125–136 (2018)CrossRef
5.
Zurück zum Zitat Thejas, G.S., Joshi, S.R., Iyengar, S.S., Sunitha, N.R., Badrinath, P.: Mini-batch normalized mutual information: a hybrid feature selection method 7, 116875–116885 (2019) Thejas, G.S., Joshi, S.R., Iyengar, S.S., Sunitha, N.R., Badrinath, P.: Mini-batch normalized mutual information: a hybrid feature selection method 7, 116875–116885 (2019)
6.
Zurück zum Zitat Fu, W., Vivek, N., Tim, M.: Why is differential evolution better than grid search for tuning defect predictors? arXiv preprint arXiv:1609.02613 (2016) Fu, W., Vivek, N., Tim, M.: Why is differential evolution better than grid search for tuning defect predictors? arXiv preprint arXiv:​1609.​02613 (2016)
Metadaten
Titel
Death Prediction by Race in Colorectal Cancer Patients Using Machine Learning Approaches
verfasst von
Frances M. Aponte-Caraballo
Frances Heredia-Negrón
Brenda G. Nieves-Rodriguez
Abiel Roche-Lima
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_1

Premium Partner