Skip to main content

2025 | OriginalPaper | Buchkapitel

Deciphering Fitness Application Data Using Machine Learning

verfasst von : Sagar Puniyani, Dhruv Girotra, Divya Agarwal, Deepali Virmani

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper predicts fitness application data of people using two machine learning techniques, linear regression and decision trees. Fitness Tracker collects data pertaining of physical activities such as steps, distance, calories burnt, sleep routine, etc. This paper explores the correlation between the aforementioned physical activities to find out which of the following affects calories burnt the highest. Comparison is done among two popular machine learning algorithms to depict their performance, interpretability, scalability, and applicability to the different datasets. This allows for us to maximize efficiency by reducing the collection of unnecessary data and further discuss suitable machine learning algorithms to implement in fitness devices for better accuracy in readings from fitness applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, Z. (2015). Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Transactions on Biomedical Engineering, 62(8), 1902–1910.CrossRef Zhang, Z. (2015). Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Transactions on Biomedical Engineering, 62(8), 1902–1910.CrossRef
2.
Zurück zum Zitat Meng, Y., et al. (2019). A machine learning approach to classifying self-reported health status in a cohort of patients with heart disease using activity tracker data. IEEE Journal of Biomedical and Health Informatics, 24(3), 878–884. Meng, Y., et al. (2019). A machine learning approach to classifying self-reported health status in a cohort of patients with heart disease using activity tracker data. IEEE Journal of Biomedical and Health Informatics, 24(3), 878–884.
3.
Zurück zum Zitat Zhou, W., & Piramuthu, S. (2014) Security/privacy of wearable fitness tracking IoT devices. In 2014 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE. Zhou, W., & Piramuthu, S. (2014) Security/privacy of wearable fitness tracking IoT devices. In 2014 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE.
4.
Zurück zum Zitat Bender, C. G., et al. (2017). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS). IEEE. Bender, C. G., et al. (2017). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS). IEEE.
5.
Zurück zum Zitat Eberz, S., Lovisotto, G., Patane, A., Kwiatkowska, M., Lenders, V., & Martinovic, I. (2018, May). When your fitness tracker betrays you: Quantifying the predictability of biometric features across contexts. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 889–905). IEEE. Eberz, S., Lovisotto, G., Patane, A., Kwiatkowska, M., Lenders, V., & Martinovic, I. (2018, May). When your fitness tracker betrays you: Quantifying the predictability of biometric features across contexts. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 889–905). IEEE.
6.
Zurück zum Zitat Bender, C. G., Hoffstot, J. C., Combs, B. T., Hooshangi, S., & Cappos, J. (2017, March). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–6). IEEE. Bender, C. G., Hoffstot, J. C., Combs, B. T., Hooshangi, S., & Cappos, J. (2017, March). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–6). IEEE.
7.
Zurück zum Zitat Kitsiou, S., Thomas, M., Marai, G. E., Maglaveras, N., Kondos, G., Arena, R., & Gerber, B. (2017, February). Development of an innovative mHealth platform for remote physical activity monitoring and health coaching of cardiac rehabilitation patients. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 133–136). IEEE. Kitsiou, S., Thomas, M., Marai, G. E., Maglaveras, N., Kondos, G., Arena, R., & Gerber, B. (2017, February). Development of an innovative mHealth platform for remote physical activity monitoring and health coaching of cardiac rehabilitation patients. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 133–136). IEEE.
8.
Zurück zum Zitat Tiwari, G., & Gupta, S. (2021). An mmWave radar based real-time contactless fitness tracker using deep CNNs. IEEE Sensors Journal, 21(15), 17262–17270.CrossRef Tiwari, G., & Gupta, S. (2021). An mmWave radar based real-time contactless fitness tracker using deep CNNs. IEEE Sensors Journal, 21(15), 17262–17270.CrossRef
9.
Zurück zum Zitat Lowens, B., Motti, V. G., & Caine, K. (2017, August). Wearable privacy: Skeletons in the data closet. In 2017 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 295–304). IEEE. Lowens, B., Motti, V. G., & Caine, K. (2017, August). Wearable privacy: Skeletons in the data closet. In 2017 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 295–304). IEEE.
10.
Zurück zum Zitat Yin, J., Feng, J., & Wang, Y. (2015). Social media and multinational corporations’ corporate social responsibility in China: The case of ConocoPhillips oil spill incident. IEEE Transactions on Professional Communication, 58(2), 135–153.CrossRef Yin, J., Feng, J., & Wang, Y. (2015). Social media and multinational corporations’ corporate social responsibility in China: The case of ConocoPhillips oil spill incident. IEEE Transactions on Professional Communication, 58(2), 135–153.CrossRef
11.
Zurück zum Zitat Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.CrossRef Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.CrossRef
12.
Zurück zum Zitat Yao, W., & Li, L. (2014). A new regression model: Modal linear regression. Scandinavian Journal of Statistics, 41(3), 656–671.MathSciNetCrossRef Yao, W., & Li, L. (2014). A new regression model: Modal linear regression. Scandinavian Journal of Statistics, 41(3), 656–671.MathSciNetCrossRef
13.
Zurück zum Zitat Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. (2020). Comparison of VPN protocols at network layer focusing on wire guard protocol. Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. (2020). Comparison of VPN protocols at network layer focusing on wire guard protocol.
14.
Zurück zum Zitat Zhang, Z., Li, Y., Li, L., Li, Z., & Liu, S. (2019). Multiple linear regression for high efficiency video intra coding. In ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019 (pp. 1832–1836). Zhang, Z., Li, Y., Li, L., Li, Z., & Liu, S. (2019). Multiple linear regression for high efficiency video intra coding. In ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019 (pp. 1832–1836).
15.
Zurück zum Zitat Barthet, M., Fazekas, G., & Sandler, M. (2013). Music emotion recognition: From content-to context-based models. In From Sounds to Music and Emotions: 9th International Symposium, CMMR 2012, London, UK, June 19–22, 2012. Revised Selected Papers (Vol. 9). Springer. Barthet, M., Fazekas, G., & Sandler, M. (2013). Music emotion recognition: From content-to context-based models. In From Sounds to Music and Emotions: 9th International Symposium, CMMR 2012, London, UK, June 19–22, 2012. Revised Selected Papers (Vol. 9). Springer.
16.
Zurück zum Zitat Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.CrossRef Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.CrossRef
17.
Zurück zum Zitat Verran, J. A., & Ferketich, S. L. (1984). Residual analysis for statistical assumptions of regression equations. Western Journal of Nursing Research, 6(1), 27–40.CrossRef Verran, J. A., & Ferketich, S. L. (1984). Residual analysis for statistical assumptions of regression equations. Western Journal of Nursing Research, 6(1), 27–40.CrossRef
18.
Zurück zum Zitat Priyam, A., Abhijeeta, G. R., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of Current Engineering and Technology, 3(2), 334–337. Priyam, A., Abhijeeta, G. R., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of Current Engineering and Technology, 3(2), 334–337.
19.
Zurück zum Zitat Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78.CrossRef Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78.CrossRef
20.
Zurück zum Zitat Ray, P. A., et al. (2019). Growth of the decision tree: Advances in bottom‐up climate change risk management. JAWRA Journal of the American Water Resources Association, 55(4), 920–937. Ray, P. A., et al. (2019). Growth of the decision tree: Advances in bottom‐up climate change risk management. JAWRA Journal of the American Water Resources Association, 55(4), 920–937.
21.
Zurück zum Zitat Mohamed, W. N. H. W., Salleh, M. N. M., & Omar, A. H. (2012, November). A comparative study of reduced error pruning method in decision tree algorithms. In 2012 IEEE International Conference on Control System, Computing and Engineering (pp. 392–397). IEEE. Mohamed, W. N. H. W., Salleh, M. N. M., & Omar, A. H. (2012, November). A comparative study of reduced error pruning method in decision tree algorithms. In 2012 IEEE International Conference on Control System, Computing and Engineering (pp. 392–397). IEEE.
22.
Zurück zum Zitat Chang, Y.-J., et al. (2019). Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM, 71, 3433–3442. Chang, Y.-J., et al. (2019). Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM, 71, 3433–3442.
23.
Zurück zum Zitat Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. In Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (Vol. 14). Department of Emergency Medicine Harbor-UCLA Medical Center Torrance. Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. In Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (Vol. 14). Department of Emergency Medicine Harbor-UCLA Medical Center Torrance.
24.
Zurück zum Zitat Chen, T. Y., Chang, Y. H., Yang, M. C., & Chen, H. W. (2020, August). How to cultivate a green decision tree without loss of accuracy? In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (pp. 1–6). Chen, T. Y., Chang, Y. H., Yang, M. C., & Chen, H. W. (2020, August). How to cultivate a green decision tree without loss of accuracy? In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (pp. 1–6).
25.
Zurück zum Zitat Li, J., Fong, S., Mohammed, S., Fiaidhi, J., Chen, Q., & Tan, Z. (2016). Solving the under-fitting problem for decision tree algorithms by incremental swarm optimization in rare-event healthcare classification. Journal of Medical Imaging and Health Informatics, 6(4), 1102–1110.CrossRef Li, J., Fong, S., Mohammed, S., Fiaidhi, J., Chen, Q., & Tan, Z. (2016). Solving the under-fitting problem for decision tree algorithms by incremental swarm optimization in rare-event healthcare classification. Journal of Medical Imaging and Health Informatics, 6(4), 1102–1110.CrossRef
26.
Zurück zum Zitat Delgado, R., & Núñez-González, J. D. (2019). Enhancing Confusion Entropy (CEN) for binary and multiclass classification. PLoS ONE, 14(1), e0210264.CrossRef Delgado, R., & Núñez-González, J. D. (2019). Enhancing Confusion Entropy (CEN) for binary and multiclass classification. PLoS ONE, 14(1), e0210264.CrossRef
Metadaten
Titel
Deciphering Fitness Application Data Using Machine Learning
verfasst von
Sagar Puniyani
Dhruv Girotra
Divya Agarwal
Deepali Virmani
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_37