Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.02.2018 | Original Article | Ausgabe 3-4/2018

Neuroinformatics 3-4/2018

Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts

Zeitschrift:
Neuroinformatics > Ausgabe 3-4/2018
Autoren:
Shijie Zhao, Junwei Han, Xi Jiang, Heng Huang, Huan Liu, Jinglei Lv, Lei Guo, Tianming Liu

Abstract

In recent years, natural stimuli such as audio excerpts or video streams have received increasing attention in neuroimaging studies. Compared with conventional simple, idealized and repeated artificial stimuli, natural stimuli contain more unrepeated, dynamic and complex information that are more close to real-life. However, there is no direct correspondence between the stimuli and any sensory or cognitive functions of the brain, which makes it difficult to apply traditional hypothesis-driven analysis methods (e.g., the general linear model (GLM)). Moreover, traditional data-driven methods (e.g., independent component analysis (ICA)) lack quantitative modeling of stimuli, which may limit the power of analysis models. In this paper, we propose a sparse representation based decoding framework to explore the neural correlates between the computational audio features and functional brain activities under free listening conditions. First, we adopt a biologically-plausible auditory saliency feature to quantitatively model the audio excerpts and meanwhile develop sparse representation/dictionary learning method to learn an over-complete dictionary basis of brain activity patterns. Then, we reconstruct the auditory saliency features from the learned fMRI-derived dictionaries. After that, a group-wise analysis procedure is conducted to identify the associated brain regions and networks. Experiments showed that the auditory saliency feature can be well decoded from brain activity patterns by our methods, and the identified brain regions and networks are consistent and meaningful. At last, our method is evaluated and compared with ICA method and experimental results demonstrated the superiority of our methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3-4/2018

Neuroinformatics 3-4/2018 Zur Ausgabe

Premium Partner

    Bildnachweise