Skip to main content

2021 | OriginalPaper | Buchkapitel

7. Decomposing the Energy Impact of the Steel Industry in the Manufacturing Sector: Evidence from Japan and China

verfasst von : Saifun Nahaer Eva, Takashi Sekiyama, Masashi Yamamoto

Erschienen in: Growth Mechanisms and Sustainability

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Anthropogenic carbon dioxide (CO2) emissions alarmingly rising up to cause global warming through global greenhouse gas (GHG) emissions. To reach Paris Agreement targets and reduce GHG to net zero by 2050, dramatic action is required from the iron and steel industry. This study aims to explore the changes in CO2 emissions of Japanese and Chinese manufacturing subsectors from 2008 to 2017 and 2005 to 2017, respectively. Manufacturing sectors of Japan and China are split into two groups: CO2 emissions from all manufacturing subsectors and manufacturing sectors excluding the iron and steel industry. We decompose CO2 emissions by separating the scale, composition and technique effects following the novel method of (Levinson (2015) A direct estimate of the technique effect: Changes in the pollution intensity of US manufacturing, 1990–2008. Journal of the Association of Environmental and Resource). Our study postulates, after excluding emissions from the iron and steel industry, composition effect actually increases pollution emissions. Significant reduction in CO2 emissions is accelerated by innovative improvements to production driven by technology and/or regulations of Japanese and Chinese manufacturing. Different results are observed for all manufacturing subsectors: compositional changes account almost half of emissions reduction for Japan and 18% for China, which are larger than previous studies on environmental problems. This finding suggests iron and steel industry needs to augment its technical potential to reduce CO2 emissions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
How can the composition effect account for more than 100% of the cleanup? Since the technique effect increased CO2 pollution by 368% from 2008 to 2017, the composition effect is calculated as a 468% decline in CO2 pollution: [(−2.84) − (−12.27)/( −2.84) − (−4.85)]*100.
 
2
As we discussed earlier, the results changed remarkably only for the iron and steel industry in Japan during the time period from 2008 to 2017 and 2011 to 2017.
 
Literatur
Zurück zum Zitat Ahmed, A., S.U. Gazi, and K. Sohag. 2016. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass and Bioenergy 90: 202–208.CrossRef Ahmed, A., S.U. Gazi, and K. Sohag. 2016. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass and Bioenergy 90: 202–208.CrossRef
Zurück zum Zitat Baron, R., and Fischer, R. 2015. Divestment and stranded assets in the low-carbon transition. Background paper for the 32nd Round Table on Sustainable Development OECD Headquarters, Paris. Baron, R., and Fischer, R. 2015. Divestment and stranded assets in the low-carbon transition. Background paper for the 32nd Round Table on Sustainable Development OECD Headquarters, Paris.
Zurück zum Zitat Bernard, J.T., J. Hussain, and M.M. Sinha. 2020. Survival of the cleanest? Evidence from a plant level analysis of pollutant emissions in Canadian pulp and paper industry, 2005–2013. Environmental Economics and Policy Studies 22: 109–126.CrossRef Bernard, J.T., J. Hussain, and M.M. Sinha. 2020. Survival of the cleanest? Evidence from a plant level analysis of pollutant emissions in Canadian pulp and paper industry, 2005–2013. Environmental Economics and Policy Studies 22: 109–126.CrossRef
Zurück zum Zitat Brunel, C. 2017. Pollution offshoring and emission reductions in EU and US manufacturing. Environmental and Resource Economics 69 (3): 621–641.CrossRef Brunel, C. 2017. Pollution offshoring and emission reductions in EU and US manufacturing. Environmental and Resource Economics 69 (3): 621–641.CrossRef
Zurück zum Zitat Chen, J., L. Shen, Q. Shi, et al. 2019. The effect of production structure on the total CO2 emissions intensity in the Chinese construction industry. Journal of Cleaner Production 213: 1087–1095.CrossRef Chen, J., L. Shen, Q. Shi, et al. 2019. The effect of production structure on the total CO2 emissions intensity in the Chinese construction industry. Journal of Cleaner Production 213: 1087–1095.CrossRef
Zurück zum Zitat Chen, Y., X. Fan, and Q. Zhou. 2019. An Inverted-U impact of environmental regulations on carbon emissions in China’s iron and steel industry: Mechanisms of synergy and innovation effects. Sustainability 12: 1038.CrossRef Chen, Y., X. Fan, and Q. Zhou. 2019. An Inverted-U impact of environmental regulations on carbon emissions in China’s iron and steel industry: Mechanisms of synergy and innovation effects. Sustainability 12: 1038.CrossRef
Zurück zum Zitat Christian, H., J.N. Lee-Shin, A. Carpentier, et al. 2016. The EU Circular Economy and Its Relevance to Metal Recycling. Recycling 1: 242–253.CrossRef Christian, H., J.N. Lee-Shin, A. Carpentier, et al. 2016. The EU Circular Economy and Its Relevance to Metal Recycling. Recycling 1: 242–253.CrossRef
Zurück zum Zitat Cole, M.A., and L. Zhang. 2019. The clean-up of Chinese manufacturing: Examining the role played by changing techniques of production. Economics Letters 180: 11–14.CrossRef Cole, M.A., and L. Zhang. 2019. The clean-up of Chinese manufacturing: Examining the role played by changing techniques of production. Economics Letters 180: 11–14.CrossRef
Zurück zum Zitat Gao, Y. 2017. China’s Response to Climate Change Issues After Paris Climate Change Conference. Climate Change Research 13: 89–94. Gao, Y. 2017. China’s Response to Climate Change Issues After Paris Climate Change Conference. Climate Change Research 13: 89–94.
Zurück zum Zitat Gielen, D., Bennaceur, K., Kerr, T., et al. 2007. IEA, Tracking Industrial Energy Efficiency and CO2 Emissions Gielen, D., Bennaceur, K., Kerr, T., et al. 2007. IEA, Tracking Industrial Energy Efficiency and CO2 Emissions
Zurück zum Zitat Gomes, I.H., V. Funari, W.M. Mayes, et al. 2018. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. Journal of Environmental Management 222: 30–36.CrossRef Gomes, I.H., V. Funari, W.M. Mayes, et al. 2018. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. Journal of Environmental Management 222: 30–36.CrossRef
Zurück zum Zitat Greenhouse Gas Inventory Office of Japan (GIO). 2020. National greenhouse gas inventory report of Japan. Accessed 23 October 2020. Greenhouse Gas Inventory Office of Japan (GIO). 2020. National greenhouse gas inventory report of Japan. Accessed 23 October 2020.
Zurück zum Zitat Guo, P., T. Wang, D. Lia, X. Zhou, et al. 2016. How energy technology innovation affects transition of coal resource-based economy in China. Energy Policy 92: 1–6.CrossRef Guo, P., T. Wang, D. Lia, X. Zhou, et al. 2016. How energy technology innovation affects transition of coal resource-based economy in China. Energy Policy 92: 1–6.CrossRef
Zurück zum Zitat Hashmi, R., and K. Alam. 2019. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. Journal of Cleaner Production 231: 1100–1109.CrossRef Hashmi, R., and K. Alam. 2019. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. Journal of Cleaner Production 231: 1100–1109.CrossRef
Zurück zum Zitat He, K., L. Wang, and X.Y. Li. 2020. Review of the Energy Consumption and Production Structure of China’s Steel Industry: Current Situation and Future Development. Metals 10: 302.CrossRef He, K., L. Wang, and X.Y. Li. 2020. Review of the Energy Consumption and Production Structure of China’s Steel Industry: Current Situation and Future Development. Metals 10: 302.CrossRef
Zurück zum Zitat Holland, S.P., E.T. Mansur, N.Z. Muller, et al. 2020. Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation. American Economic Journal: Economic Policy 12: 244–274. Holland, S.P., E.T. Mansur, N.Z. Muller, et al. 2020. Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation. American Economic Journal: Economic Policy 12: 244–274.
Zurück zum Zitat Horii, K., Kato, T., Sugahara, K., et al. 2015. Overview of iron/steel slag application and development of new utilization technologies. Nippon Steel & Sumitomo Metal Technical Report 109: 5–11. Horii, K., Kato, T., Sugahara, K., et al. 2015. Overview of iron/steel slag application and development of new utilization technologies. Nippon Steel & Sumitomo Metal Technical Report 109: 5–11.
Zurück zum Zitat Kuramochi, T. 2014. GHG mitigation in Japan: An overview of the current policy landscape. Working Paper Washington, DC: World Resources Institute. Kuramochi, T. 2014. GHG mitigation in Japan: An overview of the current policy landscape. Working Paper Washington, DC: World Resources Institute.
Zurück zum Zitat Kuramochi, T. 2015. Review of energy and climate policy developments in Japan before and after Fukushima. Renewable and Sustainable Energy Reviews 43: 1320–1332.CrossRef Kuramochi, T. 2015. Review of energy and climate policy developments in Japan before and after Fukushima. Renewable and Sustainable Energy Reviews 43: 1320–1332.CrossRef
Zurück zum Zitat Levinson, A. 2009. Technology, international trade, and pollution from US manufacturing. American Economic Review 99: 2177–2192.CrossRef Levinson, A. 2009. Technology, international trade, and pollution from US manufacturing. American Economic Review 99: 2177–2192.CrossRef
Zurück zum Zitat Levinson, A. 2015. A direct estimate of the technique effect: Changes in the pollution intensity of US manufacturing, 1990–2008. Journal of the Association of Environmental and Resource Economists 2(1): 43–56. Levinson, A. 2015. A direct estimate of the technique effect: Changes in the pollution intensity of US manufacturing, 1990–2008. Journal of the Association of Environmental and Resource Economists 2(1): 43–56.
Zurück zum Zitat Liao, M., and Y. Ren. 2020. The ‘double-edged effect’ of progress in energy-biased technology on energy efficiency: A comparison between the manufacturing sector of China and Japan. Journal of Environmental Management 270: 110794.CrossRef Liao, M., and Y. Ren. 2020. The ‘double-edged effect’ of progress in energy-biased technology on energy efficiency: A comparison between the manufacturing sector of China and Japan. Journal of Environmental Management 270: 110794.CrossRef
Zurück zum Zitat Liobikiene, G., and M. Butkus. 2019. Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions. Renewable Energy 132: 1310–1322.CrossRef Liobikiene, G., and M. Butkus. 2019. Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions. Renewable Energy 132: 1310–1322.CrossRef
Zurück zum Zitat Moody’s. 2018. Carbon transition raises risk for steelmakers but effects will vary widely. https://www.moodys.com/research/. Moodys Global steel industry faces evolving credit risk from carbon PR381106. Accessed 28 November 2020. Moody’s. 2018. Carbon transition raises risk for steelmakers but effects will vary widely. https://​www.​moodys.​com/​research/​. Moodys Global steel industry faces evolving credit risk from carbon PR381106. Accessed 28 November 2020.
Zurück zum Zitat Mousa, E., C. Wang, J. Riesbeck, et al. 2016. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renewable and Sustainable Energy Reviews 65: 1247–1266.CrossRef Mousa, E., C. Wang, J. Riesbeck, et al. 2016. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renewable and Sustainable Energy Reviews 65: 1247–1266.CrossRef
Zurück zum Zitat Neves, S.A., A.C. Marques, and P. Margarida. 2020. Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution? Economic Analysis and Policy 68: 114–125.CrossRef Neves, S.A., A.C. Marques, and P. Margarida. 2020. Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution? Economic Analysis and Policy 68: 114–125.CrossRef
Zurück zum Zitat Nguyen, D.H., A. Chapman, and H. Farabi-Asl. 2019. Nation-wide emission trading model for economically feasible carbon reduction in Japan. Applied Energy 255: 113869.CrossRef Nguyen, D.H., A. Chapman, and H. Farabi-Asl. 2019. Nation-wide emission trading model for economically feasible carbon reduction in Japan. Applied Energy 255: 113869.CrossRef
Zurück zum Zitat Olivier and Peter. 2020. Trends in global CO2 and total greenhouse gas emissions. Olivier and Peter. 2020. Trends in global CO2 and total greenhouse gas emissions.
Zurück zum Zitat Pollmann, K., Kutschke, S., Matys, S., et al. 2018. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnology Advances 361048–361062. Pollmann, K., Kutschke, S., Matys, S., et al. 2018. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnology Advances 361048–361062.
Zurück zum Zitat Quader, M.A., S. Ahmed, R.A.R. Ghazilla, et al. 2015. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable and Sustainable Energy Reviews 50: 594–614.CrossRef Quader, M.A., S. Ahmed, R.A.R. Ghazilla, et al. 2015. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable and Sustainable Energy Reviews 50: 594–614.CrossRef
Zurück zum Zitat Shan, Y., D. Guan, H. Zheng, et al. 2018. Data Descriptor: China CO2 emission accounts 1997–2015. Sci Data 5: 170201.CrossRef Shan, Y., D. Guan, H. Zheng, et al. 2018. Data Descriptor: China CO2 emission accounts 1997–2015. Sci Data 5: 170201.CrossRef
Zurück zum Zitat Shan, Y., Q. Huang, and D. Guan. 2020. China CO2 emission accounts 2016–2017. Sci Data 7: 54.CrossRef Shan, Y., Q. Huang, and D. Guan. 2020. China CO2 emission accounts 2016–2017. Sci Data 7: 54.CrossRef
Zurück zum Zitat Skoczkowski, T., E. Verdolini, S. Bielecki, et al. 2020. Technology innovation system analysis of decarbonisation options in the EU steel industry. Energy 212: 118688.CrossRef Skoczkowski, T., E. Verdolini, S. Bielecki, et al. 2020. Technology innovation system analysis of decarbonisation options in the EU steel industry. Energy 212: 118688.CrossRef
Zurück zum Zitat Stefan, V., M. Grajewski, K. Govorukha, et al. 2020. Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development. Applied Energy 264: 114633.CrossRef Stefan, V., M. Grajewski, K. Govorukha, et al. 2020. Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development. Applied Energy 264: 114633.CrossRef
Zurück zum Zitat The State Council of China. 2016. The 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China (2016–2020). The State Council of China. 2016. The 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China (2016–2020).
Zurück zum Zitat The Technical Society, The Iron, Steel Institute, and of Japan (ISIJ) . 2020. Production and technology of iron and steel in Japan during 2019. ISIJ International 60 (6): 1063–1108.CrossRef The Technical Society, The Iron, Steel Institute, and of Japan (ISIJ) . 2020. Production and technology of iron and steel in Japan during 2019. ISIJ International 60 (6): 1063–1108.CrossRef
Zurück zum Zitat Tonomura, S. 2013. Outline of Course 50. Energy Procedia 37: 7160–7167.CrossRef Tonomura, S. 2013. Outline of Course 50. Energy Procedia 37: 7160–7167.CrossRef
Zurück zum Zitat Wang, R.Q., L. Jiang, Y.D. Wang, et al. 2020. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review. Journal of Cleaner Production 274: 122997.CrossRef Wang, R.Q., L. Jiang, Y.D. Wang, et al. 2020. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review. Journal of Cleaner Production 274: 122997.CrossRef
Zurück zum Zitat Wang, Z., and Y. Zhu. 2020. Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Science of the Total Environment 726: 138574.CrossRef Wang, Z., and Y. Zhu. 2020. Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Science of the Total Environment 726: 138574.CrossRef
Zurück zum Zitat Wei, Z., B. Han, X. Pan, et al. 2020. Effects of diversified openness channels on the total factor energy efficiency in China’s manufacturing sub-sectors: Evidence from trade and FDI spillovers. Energy Economics 90: 104836.CrossRef Wei, Z., B. Han, X. Pan, et al. 2020. Effects of diversified openness channels on the total factor energy efficiency in China’s manufacturing sub-sectors: Evidence from trade and FDI spillovers. Energy Economics 90: 104836.CrossRef
Zurück zum Zitat Yanagi, K., A. Nakamura, and E. Komatsu. 2019. Policy Instrument Options for Commercialising Carbon Capture and Storage (CCS) in Japan. Meiji Law Journal 26: 17–39. Yanagi, K., A. Nakamura, and E. Komatsu. 2019. Policy Instrument Options for Commercialising Carbon Capture and Storage (CCS) in Japan. Meiji Law Journal 26: 17–39.
Zurück zum Zitat Yang, J., W. Cai, M. Ma, et al. 2020. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Science of the Total Environment 711: 134569.CrossRef Yang, J., W. Cai, M. Ma, et al. 2020. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Science of the Total Environment 711: 134569.CrossRef
Zurück zum Zitat Yang, Z., S. Shao, C. Li, et al. 2020. Alleviating the misallocation of R & D inputs in China’s manufacturing sector: From the perspectives of factor-biased technological innovation and substitution elasticity. Technological Forecasting & Social Change 151: 119878.CrossRef Yang, Z., S. Shao, C. Li, et al. 2020. Alleviating the misallocation of R & D inputs in China’s manufacturing sector: From the perspectives of factor-biased technological innovation and substitution elasticity. Technological Forecasting & Social Change 151: 119878.CrossRef
Zurück zum Zitat Zhang, C., B. Su, K. Zhou, et al. 2019. Decomposition analysis of China’s CO2 emissions (2000–2016) and scenario analysis of its carbon intensity targets in 2020 and 2030. Science of the Total Environment 668: 432–442.CrossRef Zhang, C., B. Su, K. Zhou, et al. 2019. Decomposition analysis of China’s CO2 emissions (2000–2016) and scenario analysis of its carbon intensity targets in 2020 and 2030. Science of the Total Environment 668: 432–442.CrossRef
Zurück zum Zitat Zhu, B., B. Su, and Y. Li. 2018. Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 - 2013/14. Applied Energy 230: 1545–1556.CrossRef Zhu, B., B. Su, and Y. Li. 2018. Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 - 2013/14. Applied Energy 230: 1545–1556.CrossRef
Metadaten
Titel
Decomposing the Energy Impact of the Steel Industry in the Manufacturing Sector: Evidence from Japan and China
verfasst von
Saifun Nahaer Eva
Takashi Sekiyama
Masashi Yamamoto
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2486-5_7