Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Deconstruction of Lignocellulose Recalcitrance by Organosolv Fractionating Pretreatment for Enzymatic Hydrolysis

verfasst von : Ziyuan Zhou, Dehua Liu, Xuebing Zhao

Erschienen in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lignocellulosic biomass is a potential feedstock to produce the second-generation cellulosic ethanol and high-value-added chemicals. In order to increase the enzymatic digestibility of lignocellulosic biomass for efficient bioconversion, various pretreatment approaches have been studied. Among them, organosolv pretreatment is promising owing to its ability to achieve a biomass fractionation in one-pot process with efficient enhancement of the enzymatic digestibility. In this chapter, the research progress in recent years regarding different types of organosolv fractionating pretreatment methods (e.g., alcohol-based, organic acid-based, ketone-based, etc.) has been discussed, in terms of process operation, mechanism for improving enzymatic digestibility, and the lignin reactions during pretreatment. Organosolv fractionating pretreatment not only improves the enzymatic efficiency of the biomass but also shows great potential to achieve a full utilization of the main components. However, most existing organosolv-based biorefineries are just in pilot or demonstration scale mainly due to the high operation cost and energy consumption. To improve the economic feasibility of the organosolv pretreatment, more products with high value added should also be developed in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agnihotri, S., Johnsen, I. A., Bøe, M. S., Øyaas, K., & Moe, S. (2015). Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Science and Technology, 49(5), 881–896.CrossRef Agnihotri, S., Johnsen, I. A., Bøe, M. S., Øyaas, K., & Moe, S. (2015). Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Science and Technology, 49(5), 881–896.CrossRef
2.
Zurück zum Zitat Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.CrossRef Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.CrossRef
3.
Zurück zum Zitat Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 152, 450–456.CrossRef Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 152, 450–456.CrossRef
4.
Zurück zum Zitat Araque, E., Parra, C., Freer, J., Contreras, D., Rodríguez, J., Mendonça, R., & Baeza, J. (2008). Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 43(2), 214–219.CrossRef Araque, E., Parra, C., Freer, J., Contreras, D., Rodríguez, J., Mendonça, R., & Baeza, J. (2008). Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 43(2), 214–219.CrossRef
5.
Zurück zum Zitat Arni, S. A. (2018). Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial Crops and Products, 115, 330–339.CrossRef Arni, S. A. (2018). Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial Crops and Products, 115, 330–339.CrossRef
6.
Zurück zum Zitat Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.CrossRef Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.CrossRef
7.
Zurück zum Zitat Bajpai, P. (2010). Overview of pulp and papermaking processes. In Environmentally friendly production of pulp and paper (pp. 8–45). John Wiley & Sons, Inc., New Jersey. Bajpai, P. (2010). Overview of pulp and papermaking processes. In Environmentally friendly production of pulp and paper (pp. 8–45). John Wiley & Sons, Inc., New Jersey.
8.
Zurück zum Zitat Balakshin, M. Y., Capanema, E. A., & H-m, C. (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: Isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1), 1–7.CrossRef Balakshin, M. Y., Capanema, E. A., & H-m, C. (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: Isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1), 1–7.CrossRef
9.
Zurück zum Zitat Borand, M. N., & Karaosmanoğlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), 033104. Borand, M. N., & Karaosmanoğlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), 033104.
10.
Zurück zum Zitat Bouxin, F. P., Jackson, S. D., & Jarvis, M. C. (2014). Organosolv pretreatment of Sitka spruce wood: Conversion of hemicelluloses to ethyl glycosides. Bioresource Technology, 151, 441–444.CrossRef Bouxin, F. P., Jackson, S. D., & Jarvis, M. C. (2014). Organosolv pretreatment of Sitka spruce wood: Conversion of hemicelluloses to ethyl glycosides. Bioresource Technology, 151, 441–444.CrossRef
11.
Zurück zum Zitat Bozell, J. J., Black, S. K., Myers, M., Cahill, D., Miller, W. P., & Park, S. (2011a). Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass and Bioenergy, 35(10), 4197–4208.CrossRef Bozell, J. J., Black, S. K., Myers, M., Cahill, D., Miller, W. P., & Park, S. (2011a). Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass and Bioenergy, 35(10), 4197–4208.CrossRef
12.
Zurück zum Zitat Bozell, J. J., O'Lenick, C., & Warwick, S. (2011b). Biomass fractionation for the biorefinery: Heteronuclear multiple quantum coherence–nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. Journal of Agricultural and Food Chemistry, 59(17), 9232–9242.CrossRef Bozell, J. J., O'Lenick, C., & Warwick, S. (2011b). Biomass fractionation for the biorefinery: Heteronuclear multiple quantum coherence–nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. Journal of Agricultural and Food Chemistry, 59(17), 9232–9242.CrossRef
13.
Zurück zum Zitat Brudecki, G., Cybulska, I., Rosentrater, K., & Julson, J. (2012). Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass. Bioresource Technology, 107, 494–504.CrossRef Brudecki, G., Cybulska, I., Rosentrater, K., & Julson, J. (2012). Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass. Bioresource Technology, 107, 494–504.CrossRef
14.
Zurück zum Zitat Calvo-Flores, F. G., & Dobado, P. J. A. (2010). Lignin as renewable raw material. ChemSusChem, 3(11), 1227–1235.CrossRef Calvo-Flores, F. G., & Dobado, P. J. A. (2010). Lignin as renewable raw material. ChemSusChem, 3(11), 1227–1235.CrossRef
15.
Zurück zum Zitat Cannella, D., Sveding, P. V., & Jørgensen, H. (2014). PEI detoxification of pretreated spruce for high solids ethanol fermentation. Applied Energy, 132, 394–403.CrossRef Cannella, D., Sveding, P. V., & Jørgensen, H. (2014). PEI detoxification of pretreated spruce for high solids ethanol fermentation. Applied Energy, 132, 394–403.CrossRef
16.
Zurück zum Zitat Cateto, C., Hu, G., & Ragauskas, A. (2011). Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Science, 4(4), 1516–1521.CrossRef Cateto, C., Hu, G., & Ragauskas, A. (2011). Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Science, 4(4), 1516–1521.CrossRef
17.
Zurück zum Zitat Chen, H. (2015). Lignocellulose biorefinery feedstock engineering. In Lignocellulose Biorefinery Engineering (pp. 37–86).CrossRef Chen, H. (2015). Lignocellulose biorefinery feedstock engineering. In Lignocellulose Biorefinery Engineering (pp. 37–86).CrossRef
18.
Zurück zum Zitat Chen, H., Zhao, J., Hu, T., Zhao, X., & Liu, D. (2015). A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features. Applied Energy, 150, 224–232.CrossRef Chen, H., Zhao, J., Hu, T., Zhao, X., & Liu, D. (2015). A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features. Applied Energy, 150, 224–232.CrossRef
19.
Zurück zum Zitat Cheng, F., Zhao, X., & Hu, Y. (2018). Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents. Bioresource Technology, 249, 969–975.CrossRef Cheng, F., Zhao, X., & Hu, Y. (2018). Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents. Bioresource Technology, 249, 969–975.CrossRef
20.
Zurück zum Zitat Cui, X., Zhao, X., Zeng, J., Loh, S. K., Choo, Y. M., & Liu, D. (2014). Robust enzymatic hydrolysis of Formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol. Bioresource Technology, 166, 584–591.CrossRef Cui, X., Zhao, X., Zeng, J., Loh, S. K., Choo, Y. M., & Liu, D. (2014). Robust enzymatic hydrolysis of Formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol. Bioresource Technology, 166, 584–591.CrossRef
21.
Zurück zum Zitat Cybulska, I., Brudecki, G. P., Hankerson, B. R., Julson, J. L., & Lei, H. (2013). Catalyzed modified clean fractionation of switchgrass. Bioresource Technology, 127, 92–99.CrossRef Cybulska, I., Brudecki, G. P., Hankerson, B. R., Julson, J. L., & Lei, H. (2013). Catalyzed modified clean fractionation of switchgrass. Bioresource Technology, 127, 92–99.CrossRef
22.
Zurück zum Zitat Del Rio, L. F., Chandra, R. P., & Saddler, J. N. (2010). The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine. Applied Biochemistry and Biotechnology, 161(1–8), 1–21. Del Rio, L. F., Chandra, R. P., & Saddler, J. N. (2010). The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine. Applied Biochemistry and Biotechnology, 161(1–8), 1–21.
23.
Zurück zum Zitat Deshavath, N. N., Veeranki, V. D., & Goud, V. V. (2019). Lignocellulosic feedstocks for the production of bioethanol: Availability, structure, and composition. In Sustainable Bioenergy (pp. 1–19). Deshavath, N. N., Veeranki, V. D., & Goud, V. V. (2019). Lignocellulosic feedstocks for the production of bioethanol: Availability, structure, and composition. In Sustainable Bioenergy (pp. 1–19).
24.
Zurück zum Zitat Diaz, M. J., Huijgen, W. J., van der Laan, R. R., Reith, J. H., Cara, C., & Castro, E. (2011). Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung, 65(2), 177–183.CrossRef Diaz, M. J., Huijgen, W. J., van der Laan, R. R., Reith, J. H., Cara, C., & Castro, E. (2011). Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung, 65(2), 177–183.CrossRef
25.
Zurück zum Zitat Du, X., Lucia, L. A., & Ghiladi, R. A. (2016). Development of a highly efficient pretreatment sequence for the enzymatic saccharification of loblolly pine wood. ACS Sustainable Chemistry & Engineering, 4(7), 3669–3678.CrossRef Du, X., Lucia, L. A., & Ghiladi, R. A. (2016). Development of a highly efficient pretreatment sequence for the enzymatic saccharification of loblolly pine wood. ACS Sustainable Chemistry & Engineering, 4(7), 3669–3678.CrossRef
26.
Zurück zum Zitat Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Balcerek, M., Pielech-Przybylska, K., & Robak, K. (2019). Two-stage pretreatment to improve saccharification of oat straw and Jerusalem artichoke biomass. Energies, 12(9), 1715.CrossRef Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Balcerek, M., Pielech-Przybylska, K., & Robak, K. (2019). Two-stage pretreatment to improve saccharification of oat straw and Jerusalem artichoke biomass. Energies, 12(9), 1715.CrossRef
27.
Zurück zum Zitat Ebrahimi, M., Caparanga, A. R., Ordono, E. E., Villaflores, O. B., & Pouriman, M. (2017). Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Industrial Crops and Products, 101, 84–91.CrossRef Ebrahimi, M., Caparanga, A. R., Ordono, E. E., Villaflores, O. B., & Pouriman, M. (2017). Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Industrial Crops and Products, 101, 84–91.CrossRef
28.
Zurück zum Zitat Ede, R., Brunow, G., Poppius, K., Sundquist, J., & Hortling, B. (1988). Formic acid/peroxyformic acid pulping. Nordic Pulp & Paper Research Journal, 3(3), 119–123.CrossRef Ede, R., Brunow, G., Poppius, K., Sundquist, J., & Hortling, B. (1988). Formic acid/peroxyformic acid pulping. Nordic Pulp & Paper Research Journal, 3(3), 119–123.CrossRef
29.
Zurück zum Zitat El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003.CrossRef El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003.CrossRef
30.
Zurück zum Zitat Farmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236–244.CrossRef Farmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236–244.CrossRef
31.
Zurück zum Zitat Gandolfi, S., Ottolina, G., Consonni, R., Riva, S., & Patel, I. (2014). Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. ChemSusChem, 7(7), 1991–1999.CrossRef Gandolfi, S., Ottolina, G., Consonni, R., Riva, S., & Patel, I. (2014). Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. ChemSusChem, 7(7), 1991–1999.CrossRef
32.
Zurück zum Zitat Ghosh, A., Bai, X., & Brown, R. C. (2018). Solubilized carbohydrate production by acid-catalyzed depolymerization of cellulose in polar aprotic solvents. ChemistrySelect, 3(17), 4777–4785.CrossRef Ghosh, A., Bai, X., & Brown, R. C. (2018). Solubilized carbohydrate production by acid-catalyzed depolymerization of cellulose in polar aprotic solvents. ChemistrySelect, 3(17), 4777–4785.CrossRef
33.
Zurück zum Zitat Ghosh, A., & Brown, R. C. (2019). Factors influencing cellulosic sugar production during acid-catalyzed solvent liquefaction in 1, 4-dioxane. ACS Sustainable Chemistry & Engineering, 7(21), 18076–18084.CrossRef Ghosh, A., & Brown, R. C. (2019). Factors influencing cellulosic sugar production during acid-catalyzed solvent liquefaction in 1, 4-dioxane. ACS Sustainable Chemistry & Engineering, 7(21), 18076–18084.CrossRef
34.
Zurück zum Zitat Ghosh, A., Brown, R. C., & Bai, X. (2016). Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chemistry, 18(4), 1023–1031.CrossRef Ghosh, A., Brown, R. C., & Bai, X. (2016). Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chemistry, 18(4), 1023–1031.CrossRef
35.
Zurück zum Zitat Gierer, J. (1980). Chemical aspects of kraft pulping. Wood Science and Technology, 14(4), 241–266.CrossRef Gierer, J. (1980). Chemical aspects of kraft pulping. Wood Science and Technology, 14(4), 241–266.CrossRef
36.
Zurück zum Zitat Gierer, J. (1982). The chemistry of delignification. A general concept. Holzforschung, 36(1), 43–51.CrossRef Gierer, J. (1982). The chemistry of delignification. A general concept. Holzforschung, 36(1), 43–51.CrossRef
37.
Zurück zum Zitat Gierer, J. (1985). Chemistry of delignification. Wood Science and Technology, 19(4), 289–312.CrossRef Gierer, J. (1985). Chemistry of delignification. Wood Science and Technology, 19(4), 289–312.CrossRef
38.
Zurück zum Zitat Glaser, R., & Venus, J. (2018). Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnology Reports, 18, e00245. Glaser, R., & Venus, J. (2018). Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnology Reports, 18, e00245.
39.
Zurück zum Zitat Goh, C. S., Tan, H. T., Lee, K. T., & Brosse, N. (2011). Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 35(9), 4025–4033.CrossRef Goh, C. S., Tan, H. T., Lee, K. T., & Brosse, N. (2011). Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 35(9), 4025–4033.CrossRef
40.
Zurück zum Zitat Guo, F., Fang, Z., & Zhou, T.-J. (2012). Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide–ionic liquid mixtures. Bioresource Technology, 112, 313–318.CrossRef Guo, F., Fang, Z., & Zhou, T.-J. (2012). Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide–ionic liquid mixtures. Bioresource Technology, 112, 313–318.CrossRef
41.
Zurück zum Zitat Guo, Z., Zhang, Q., You, T., Ji, Z., Zhang, X., Qin, Y., & Xu, F. (2019a). Heteropoly acids enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis and ethanol fermentation of Miscanthus x giganteus under mild conditions. Bioresource Technology, 293, 122036.CrossRef Guo, Z., Zhang, Q., You, T., Ji, Z., Zhang, X., Qin, Y., & Xu, F. (2019a). Heteropoly acids enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis and ethanol fermentation of Miscanthus x giganteus under mild conditions. Bioresource Technology, 293, 122036.CrossRef
42.
Zurück zum Zitat Guo, Z., Zhang, Q., You, T., Zhang, X., Xu, F., & Wu, Y. (2019b). Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chemistry, 21(11), 3099–3108.CrossRef Guo, Z., Zhang, Q., You, T., Zhang, X., Xu, F., & Wu, Y. (2019b). Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chemistry, 21(11), 3099–3108.CrossRef
43.
Zurück zum Zitat Hallac, B. B., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010a). Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. Biotechnology and Bioengineering, 107(5), 795–801.CrossRef Hallac, B. B., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010a). Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. Biotechnology and Bioengineering, 107(5), 795–801.CrossRef
44.
Zurück zum Zitat Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010b). Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial and Engineering Chemistry Research, 49(4), 1467–1472.CrossRef Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010b). Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial and Engineering Chemistry Research, 49(4), 1467–1472.CrossRef
45.
Zurück zum Zitat Hideno, A., Kawashima, A., Endo, T., Honda, K., & Morita, M. (2013). Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. Bioresource Technology, 132, 64–70.CrossRef Hideno, A., Kawashima, A., Endo, T., Honda, K., & Morita, M. (2013). Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. Bioresource Technology, 132, 64–70.CrossRef
46.
Zurück zum Zitat Horn, S. J., Vaaje-Kolstad, G., Br, W., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45. Horn, S. J., Vaaje-Kolstad, G., Br, W., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45.
47.
Zurück zum Zitat Huijgen, W. J., Reith, J. H., & den Uil, H. (2010). Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Industrial and Engineering Chemistry Research, 49(20), 10132–10140.CrossRef Huijgen, W. J., Reith, J. H., & den Uil, H. (2010). Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Industrial and Engineering Chemistry Research, 49(20), 10132–10140.CrossRef
48.
Zurück zum Zitat Huijgen, W. J., Smit, A. T., Reith, J. H., & Hd, U. (2011). Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. Journal of Chemical Technology and Biotechnology, 86(11), 1428–1438.CrossRef Huijgen, W. J., Smit, A. T., Reith, J. H., & Hd, U. (2011). Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. Journal of Chemical Technology and Biotechnology, 86(11), 1428–1438.CrossRef
49.
Zurück zum Zitat Hundt, M., Schnitzlein, K., & Schnitzlein, M. G. (2013a). Alkaline polyol pulping and enzymatic hydrolysis of hardwood: Effect of pulping severity and pulp composition on cellulase activity and overall sugar yield. Bioresource Technology, 136, 672–679.CrossRef Hundt, M., Schnitzlein, K., & Schnitzlein, M. G. (2013a). Alkaline polyol pulping and enzymatic hydrolysis of hardwood: Effect of pulping severity and pulp composition on cellulase activity and overall sugar yield. Bioresource Technology, 136, 672–679.CrossRef
50.
Zurück zum Zitat Hundt, M., Schnitzlein, K., & Schnitzlein, M. G. (2013b). Alkaline polyol pulping and enzymatic hydrolysis of softwood: Effect of pulping severity and pulp properties on cellulase activity and overall sugar yield. Bioresource Technology, 134, 307–315.CrossRef Hundt, M., Schnitzlein, K., & Schnitzlein, M. G. (2013b). Alkaline polyol pulping and enzymatic hydrolysis of softwood: Effect of pulping severity and pulp properties on cellulase activity and overall sugar yield. Bioresource Technology, 134, 307–315.CrossRef
51.
Zurück zum Zitat Hussin, M. H., Rahim, A. A., Ibrahim, M. N. M., & Brosse, N. (2013). Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications. Industrial Crops and Products, 49, 23–32.CrossRef Hussin, M. H., Rahim, A. A., Ibrahim, M. N. M., & Brosse, N. (2013). Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications. Industrial Crops and Products, 49, 23–32.CrossRef
52.
Zurück zum Zitat Ingram, T., Wörmeyer, K., Lima, J. C. I., Bockemühl, V., Antranikian, G., Brunner, G., & Smirnova, I. (2011). Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource Technology, 102(8), 5221–5228.CrossRef Ingram, T., Wörmeyer, K., Lima, J. C. I., Bockemühl, V., Antranikian, G., Brunner, G., & Smirnova, I. (2011). Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource Technology, 102(8), 5221–5228.CrossRef
53.
Zurück zum Zitat Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.CrossRef Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.CrossRef
54.
Zurück zum Zitat Jia, L., Qin, Y., Wen, P., Zhang, T., & Zhang, J. (2019). Alkaline post-incubation improves cellulose hydrolysis after γ-valerolactone/water pretreatment. Bioresource Technology, 278, 440–443.CrossRef Jia, L., Qin, Y., Wen, P., Zhang, T., & Zhang, J. (2019). Alkaline post-incubation improves cellulose hydrolysis after γ-valerolactone/water pretreatment. Bioresource Technology, 278, 440–443.CrossRef
55.
Zurück zum Zitat Jin, L., Yu, X., Peng, C., Guo, Y., Zhang, L., Xu, Q., Zhao, Z. K., Liu, Y., & Xie, H. (2018). Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification. Bioresource Technology, 270, 537–544.CrossRef Jin, L., Yu, X., Peng, C., Guo, Y., Zhang, L., Xu, Q., Zhao, Z. K., Liu, Y., & Xie, H. (2018). Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification. Bioresource Technology, 270, 537–544.CrossRef
56.
Zurück zum Zitat Kandanelli, R., Thulluri, C., Mangala, R., Rao, P. V. C., Gandham, S., & Velankar, H. R. (2018). A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. Bioresource Technology, 265, 573–576.CrossRef Kandanelli, R., Thulluri, C., Mangala, R., Rao, P. V. C., Gandham, S., & Velankar, H. R. (2018). A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. Bioresource Technology, 265, 573–576.CrossRef
57.
Zurück zum Zitat Katahira, R., Mittal, A., McKinney, K., Ciesielski, P. N., Donohoe, B. S., Black, S. K., Johnson, D. K., Biddy, M. J., & Beckham, G. T. (2014). Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sustainable Chemistry & Engineering, 2(6), 1364–1376.CrossRef Katahira, R., Mittal, A., McKinney, K., Ciesielski, P. N., Donohoe, B. S., Black, S. K., Johnson, D. K., Biddy, M. J., & Beckham, G. T. (2014). Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sustainable Chemistry & Engineering, 2(6), 1364–1376.CrossRef
58.
Zurück zum Zitat Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 23(2), 309. Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 23(2), 309.
59.
Zurück zum Zitat Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20(4), 809–815.CrossRef Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20(4), 809–815.CrossRef
60.
Zurück zum Zitat Kim, Y., Yu, A., Han, M., G-w, C., & Chung, B. (2011a). Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Applied Biochemistry and Biotechnology, 163(1), 143–152.CrossRef Kim, Y., Yu, A., Han, M., G-w, C., & Chung, B. (2011a). Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Applied Biochemistry and Biotechnology, 163(1), 143–152.CrossRef
61.
Zurück zum Zitat Kim, Y., Yu, A., Han, M., Choi, G. W., & Chung, B. (2010). Ethanosolv pretreatment of barley straw with iron (III) chloride for enzymatic saccharification. Journal of Chemical Technology and Biotechnology, 85(11), 1494–1498. Kim, Y., Yu, A., Han, M., Choi, G. W., & Chung, B. (2010). Ethanosolv pretreatment of barley straw with iron (III) chloride for enzymatic saccharification. Journal of Chemical Technology and Biotechnology, 85(11), 1494–1498.
62.
Zurück zum Zitat Kim, Y., Yu, A., Han, M., Choi, G. W., & Chung, B. (2011b). Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Applied Biochemistry and Biotechnology, 163(1), 143–152.CrossRef Kim, Y., Yu, A., Han, M., Choi, G. W., & Chung, B. (2011b). Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Applied Biochemistry and Biotechnology, 163(1), 143–152.CrossRef
63.
Zurück zum Zitat Köchermann, J., Mühlenberg, J., & Klemm, M. (2018). Kinetics of hydrothermal furfural production from organosolv hemicellulose and d-xylose. Industrial and Engineering Chemistry Research, 57(43), 14417–14427.CrossRef Köchermann, J., Mühlenberg, J., & Klemm, M. (2018). Kinetics of hydrothermal furfural production from organosolv hemicellulose and d-xylose. Industrial and Engineering Chemistry Research, 57(43), 14417–14427.CrossRef
64.
Zurück zum Zitat Koo, B.-W., Kim, H.-Y., Park, N., Lee, S.-M., Yeo, H., & Choi, I.-G. (2011). Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass and Bioenergy, 35(5), 1833–1840.CrossRef Koo, B.-W., Kim, H.-Y., Park, N., Lee, S.-M., Yeo, H., & Choi, I.-G. (2011). Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass and Bioenergy, 35(5), 1833–1840.CrossRef
65.
Zurück zum Zitat Koo, B.-W., Min, B.-C., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., & Choi, I.-G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy, 42, 24–32.CrossRef Koo, B.-W., Min, B.-C., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., & Choi, I.-G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy, 42, 24–32.CrossRef
66.
Zurück zum Zitat Kozlowski, R., & Helwig, M. (1998). Lignocellulosic polymer composites. In Science and technology of polymers and advanced materials (pp. 679–698). Springer, US. Kozlowski, R., & Helwig, M. (1998). Lignocellulosic polymer composites. In Science and technology of polymers and advanced materials (pp. 679–698). Springer, US.
67.
Zurück zum Zitat Krishania, M., Kumar, V., Vijay, V. K., & Malik, A. (2012). Opportunities for improvement of process technology for biomethanation processes. Green Processing and Synthesis, 1(1), 49. Krishania, M., Kumar, V., Vijay, V. K., & Malik, A. (2012). Opportunities for improvement of process technology for biomethanation processes. Green Processing and Synthesis, 1(1), 49.
68.
Zurück zum Zitat Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4(1), 7.CrossRef Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4(1), 7.CrossRef
69.
Zurück zum Zitat Lai, C., Tu, M., Li, M., & Yu, S. (2014). Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood. Bioresource Technology, 156, 92–99.CrossRef Lai, C., Tu, M., Li, M., & Yu, S. (2014). Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood. Bioresource Technology, 156, 92–99.CrossRef
70.
Zurück zum Zitat Lee, D. H., Cho, E. Y., Kim, C. J., & Kim, S. B. (2010). Pretreatment of waste newspaper using ethylene glycol for bioethanol production. Biotechnology and Bioprocess Engineering, 15(6), 1094–1101. Lee, D. H., Cho, E. Y., Kim, C. J., & Kim, S. B. (2010). Pretreatment of waste newspaper using ethylene glycol for bioethanol production. Biotechnology and Bioprocess Engineering, 15(6), 1094–1101.
71.
Zurück zum Zitat Lee, H. V., Hamid, S. B., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. ScientificWorldJournal, 2014, 631013.CrossRef Lee, H. V., Hamid, S. B., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. ScientificWorldJournal, 2014, 631013.CrossRef
72.
Zurück zum Zitat Li, M., Tu, M., Cao, D., Bass, P., & Adhikari, S. (2013a). Distinct roles of residual xylan and lignin in limiting enzymatic hydrolysis of organosolv pretreated loblolly pine and sweetgum. Journal of Agricultural and Food Chemistry, 61(3), 646–654.CrossRef Li, M., Tu, M., Cao, D., Bass, P., & Adhikari, S. (2013a). Distinct roles of residual xylan and lignin in limiting enzymatic hydrolysis of organosolv pretreated loblolly pine and sweetgum. Journal of Agricultural and Food Chemistry, 61(3), 646–654.CrossRef
73.
Zurück zum Zitat Li, M. F., Sun, S. N., Xu, F., & Sun, R. C. (2012a). Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: A biorefinery processing perspective. In Biomass conversion (pp. 341–379). Berlin: Springer.CrossRef Li, M. F., Sun, S. N., Xu, F., & Sun, R. C. (2012a). Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: A biorefinery processing perspective. In Biomass conversion (pp. 341–379). Berlin: Springer.CrossRef
74.
Zurück zum Zitat Li, M. F., Yang, S., & Sun, R. C. (2016a). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980.CrossRef Li, M. F., Yang, S., & Sun, R. C. (2016a). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980.CrossRef
75.
Zurück zum Zitat Li, P., Zhang, Q., Zhang, X., Zhang, X., Pan, X., & Xu, F. (2019a). Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc. Bioresource Technology, 288, 121475.CrossRef Li, P., Zhang, Q., Zhang, X., Zhang, X., Pan, X., & Xu, F. (2019a). Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc. Bioresource Technology, 288, 121475.CrossRef
76.
Zurück zum Zitat Li, S., Ydna, M. Q.-S., & Jeremy, S. L. (2016b). A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chemistry, 18(4), 937–943.CrossRef Li, S., Ydna, M. Q.-S., & Jeremy, S. L. (2016b). A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chemistry, 18(4), 937–943.CrossRef
77.
Zurück zum Zitat Li, Y.-J., Li, H.-Y., Sun, S.-N., & Sun, R.-C. (2019b). Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renewable Energy, 134, 228–234.CrossRef Li, Y.-J., Li, H.-Y., Sun, S.-N., & Sun, R.-C. (2019b). Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renewable Energy, 134, 228–234.CrossRef
78.
Zurück zum Zitat Li, Z., Jiang, Z., Fei, B., Cai, Z., & Pan, X. (2012b). Ethanosolv pretreatment of bamboo with dilute acid for efficient enzymatic saccharification. In Proceedings of the 55th convention of Society of Wood Science and Technology, August 27–31, 2012 Beijing China. 9, pp 1–9. Li, Z., Jiang, Z., Fei, B., Cai, Z., & Pan, X. (2012b). Ethanosolv pretreatment of bamboo with dilute acid for efficient enzymatic saccharification. In Proceedings of the 55th convention of Society of Wood Science and Technology, August 27–31, 2012 Beijing China. 9, pp 1–9.
79.
Zurück zum Zitat Li, Z., Jiang, Z., Fei, B., Pan, X., Cai, Z., & Yu, Y. (2012c). Ethanol organosolv pretreatment of bamboo for efficient enzymatic saccharification. BioResources, 7(3), 3452–3462. Li, Z., Jiang, Z., Fei, B., Pan, X., Cai, Z., & Yu, Y. (2012c). Ethanol organosolv pretreatment of bamboo for efficient enzymatic saccharification. BioResources, 7(3), 3452–3462.
80.
Zurück zum Zitat Li, Z., Jiang, Z., Fei, B., Pan, X., Cai, Z., & Yu, Y. (2013b). Ethanosolv with NaOH pretreatment of moso bamboo for efficient enzymatic saccharification. BioResources, 8(3), 4711–4721.CrossRef Li, Z., Jiang, Z., Fei, B., Pan, X., Cai, Z., & Yu, Y. (2013b). Ethanosolv with NaOH pretreatment of moso bamboo for efficient enzymatic saccharification. BioResources, 8(3), 4711–4721.CrossRef
81.
Zurück zum Zitat Liu, J., Li, R., Shuai, L., You, J., Zhao, Y., Chen, L., Li, M., Chen, L., Huang, L., & Luo, X. (2017). Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Industrial Crops and Products, 107, 139–148.CrossRef Liu, J., Li, R., Shuai, L., You, J., Zhao, Y., Chen, L., Li, M., Chen, L., Huang, L., & Luo, X. (2017). Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Industrial Crops and Products, 107, 139–148.CrossRef
82.
Zurück zum Zitat Liu, Y., Nie, Y., Lu, X., Zhang, X., He, H., Pan, F., Zhou, L., Liu, X., Ji, X., & Zhang, S. (2019a). Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 21(13), 3499–3535.CrossRef Liu, Y., Nie, Y., Lu, X., Zhang, X., He, H., Pan, F., Zhou, L., Liu, X., Ji, X., & Zhang, S. (2019a). Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 21(13), 3499–3535.CrossRef
83.
Zurück zum Zitat Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z., & Lin, X. (2019b). Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega, 4(22), 19829–19839.CrossRef Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z., & Lin, X. (2019b). Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega, 4(22), 19829–19839.CrossRef
84.
Zurück zum Zitat Liu, Z. H., Qin, L., Li, B.-Z., & Yuan, Y.-J. (2015). Physical and chemical characterizations of corn stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 3(1), 140–146.CrossRef Liu, Z. H., Qin, L., Li, B.-Z., & Yuan, Y.-J. (2015). Physical and chemical characterizations of corn stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 3(1), 140–146.CrossRef
85.
Zurück zum Zitat Long, J., Li, X., Guo, B., Wang, L., & Zhang, N. (2013). Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids. Catalysis Today, 200, 99–105.CrossRef Long, J., Li, X., Guo, B., Wang, L., & Zhang, N. (2013). Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids. Catalysis Today, 200, 99–105.CrossRef
86.
Zurück zum Zitat Lynam, J. G., Chow, G. I., Hyland, P. L., & Coronella, C. J. (2016). Corn stover pretreatment by ionic liquid and glycerol mixtures with their density, viscosity, and thermogravimetric properties. ACS Sustainable Chemistry & Engineering, 4(7), 3786–3793.CrossRef Lynam, J. G., Chow, G. I., Hyland, P. L., & Coronella, C. J. (2016). Corn stover pretreatment by ionic liquid and glycerol mixtures with their density, viscosity, and thermogravimetric properties. ACS Sustainable Chemistry & Engineering, 4(7), 3786–3793.CrossRef
87.
Zurück zum Zitat Lynam, J. G., & Coronella, C. J. (2014). Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresource Technology, 166, 471–478.CrossRef Lynam, J. G., & Coronella, C. J. (2014). Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresource Technology, 166, 471–478.CrossRef
88.
Zurück zum Zitat Lynam, J. G., & Coronella, C. J. (2016). Loblolly pine pretreatment by ionic liquid-glycerol mixtures. Biomass Conversion and Biorefinery, 6(3), 247–260.CrossRef Lynam, J. G., & Coronella, C. J. (2016). Loblolly pine pretreatment by ionic liquid-glycerol mixtures. Biomass Conversion and Biorefinery, 6(3), 247–260.CrossRef
89.
Zurück zum Zitat Martin-Sampedro, R., Filpponen, I., Hoeger, I. C., Zhu, J. Y., Laine, J., & Rojas, O. J. (2012). Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Letters, 1(11), 1321–1325.CrossRef Martin-Sampedro, R., Filpponen, I., Hoeger, I. C., Zhu, J. Y., Laine, J., & Rojas, O. J. (2012). Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Letters, 1(11), 1321–1325.CrossRef
90.
Zurück zum Zitat Martino, D. C., Colodette, J. L., Chandra, R., & Saddler, J. (2017). Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Science and Technology, 51(3), 557–569.CrossRef Martino, D. C., Colodette, J. L., Chandra, R., & Saddler, J. (2017). Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Science and Technology, 51(3), 557–569.CrossRef
91.
Zurück zum Zitat McDonough, T. J. (1992). The chemistry of organosolv delignification. Tappi Journal, 76, 186–193. McDonough, T. J. (1992). The chemistry of organosolv delignification. Tappi Journal, 76, 186–193.
92.
Zurück zum Zitat Menon, V., Prakash, G., & Rao, M. (2010). Value added products from hemicellulose: Biotechnological perspective. Global Journal of Biochemistry, 1(1), 36–67. Menon, V., Prakash, G., & Rao, M. (2010). Value added products from hemicellulose: Biotechnological perspective. Global Journal of Biochemistry, 1(1), 36–67.
93.
Zurück zum Zitat Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., & Mussatto, S. I. (2010a). An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 85(8), 1092–1098.CrossRef Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., & Mussatto, S. I. (2010a). An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 85(8), 1092–1098.CrossRef
94.
Zurück zum Zitat Mesa, L., González, E., Ruiz, E., Romero, I., Cara, C., Felissia, F., & Castro, E. (2010b). Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy, 87(1), 109–114.CrossRef Mesa, L., González, E., Ruiz, E., Romero, I., Cara, C., Felissia, F., & Castro, E. (2010b). Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy, 87(1), 109–114.CrossRef
95.
Zurück zum Zitat Monrroy, M., Ibanez, J., Melin, V., Baeza, J., Mendonça, R. T., Contreras, D., & Freer, J. (2010). Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. Enzyme and Microbial Technology, 47(1–2), 11–16.CrossRef Monrroy, M., Ibanez, J., Melin, V., Baeza, J., Mendonça, R. T., Contreras, D., & Freer, J. (2010). Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. Enzyme and Microbial Technology, 47(1–2), 11–16.CrossRef
96.
Zurück zum Zitat Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRef Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRef
97.
Zurück zum Zitat Mou, H., & Wu, S. (2017). Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose, 24(1), 85–94.CrossRef Mou, H., & Wu, S. (2017). Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose, 24(1), 85–94.CrossRef
98.
Zurück zum Zitat Muñoz, C., Baeza, J., Freer, J., & Mendonça, R. T. (2011). Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Journal of Industrial Microbiology & Biotechnology, 38(11), 1861.CrossRef Muñoz, C., Baeza, J., Freer, J., & Mendonça, R. T. (2011). Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Journal of Industrial Microbiology & Biotechnology, 38(11), 1861.CrossRef
99.
Zurück zum Zitat Mussatto, S. I. (2016). Biomass pretreatment with acids. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 169–185).CrossRef Mussatto, S. I. (2016). Biomass pretreatment with acids. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 169–185).CrossRef
100.
Zurück zum Zitat Mussatto, S. I., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2008). Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 43(2), 124–129.CrossRef Mussatto, S. I., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2008). Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 43(2), 124–129.CrossRef
101.
Zurück zum Zitat Neilson, J., & Shafizadeh, F. (1983). Evaluation of organosolv pulp as a suitable substrate for rapid enzymatic hydrolysis. Biotechnology & Bioengineering (United States), 25(2), 609. Neilson, J., & Shafizadeh, F. (1983). Evaluation of organosolv pulp as a suitable substrate for rapid enzymatic hydrolysis. Biotechnology & Bioengineering (United States), 25(2), 609.
102.
Zurück zum Zitat Nitsos, C., Rova, U., & Christakopoulos, P. (2018). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11(1), 50.CrossRef Nitsos, C., Rova, U., & Christakopoulos, P. (2018). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11(1), 50.CrossRef
103.
Zurück zum Zitat Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., & Saddler, J. (2005a). Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 90(4), 473–481.CrossRef Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., & Saddler, J. (2005a). Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 90(4), 473–481.CrossRef
104.
Zurück zum Zitat Pan, X., Dan, X., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005b). Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 124(1–3), 1069–1079.CrossRef Pan, X., Dan, X., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005b). Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 124(1–3), 1069–1079.CrossRef
105.
Zurück zum Zitat Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006a). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861.CrossRef Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006a). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861.CrossRef
106.
Zurück zum Zitat Pan, X., Gilkes, N., & Saddler, J. N. (2006b). Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, 60(4), 398–401.CrossRef Pan, X., Gilkes, N., & Saddler, J. N. (2006b). Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, 60(4), 398–401.CrossRef
107.
Zurück zum Zitat Pan, X., Kadla, J. F., Ehara, K., Gilkes, N., & Saddler, J. N. (2006c). Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry, 54(16), 5806–5813.CrossRef Pan, X., Kadla, J. F., Ehara, K., Gilkes, N., & Saddler, J. N. (2006c). Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry, 54(16), 5806–5813.CrossRef
108.
Zurück zum Zitat Pan, X., Xie, D., Yu, R. W., Lam, D., & Saddler, J. N. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 46(8), 2609–2617.CrossRef Pan, X., Xie, D., Yu, R. W., Lam, D., & Saddler, J. N. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 46(8), 2609–2617.CrossRef
109.
Zurück zum Zitat Papa, G., Rodriguez, S., George, A., Schievano, A., Orzi, V., Sale, K. L., Singh, S., Adani, F., & Simmons, B. A. (2015). Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresource Technology, 183, 101–110.CrossRef Papa, G., Rodriguez, S., George, A., Schievano, A., Orzi, V., Sale, K. L., Singh, S., Adani, F., & Simmons, B. A. (2015). Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresource Technology, 183, 101–110.CrossRef
110.
Zurück zum Zitat Parawira, W., & Tekere, M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 31(1), 20–31.CrossRef Parawira, W., & Tekere, M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 31(1), 20–31.CrossRef
111.
Zurück zum Zitat Park, N., Kim, H.-Y., Koo, B.-W., Yeo, H., & Choi, I.-G. (2010). Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresource Technology, 101(18), 7046–7053.CrossRef Park, N., Kim, H.-Y., Koo, B.-W., Yeo, H., & Choi, I.-G. (2010). Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresource Technology, 101(18), 7046–7053.CrossRef
112.
Zurück zum Zitat Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., Rehmann, L., & Marzocchella, A. (2018). Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 11, 37.CrossRef Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., Rehmann, L., & Marzocchella, A. (2018). Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 11, 37.CrossRef
113.
Zurück zum Zitat Qureshi, N., Liu, S., Hughes, S., Palmquist, D., Dien, B., & Saha, B. (2016). Cellulosic butanol (ABE) biofuel production from sweet sorghum bagasse (SSB): Impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260. Bioenergy Research, 9(4), 1167–1179.CrossRef Qureshi, N., Liu, S., Hughes, S., Palmquist, D., Dien, B., & Saha, B. (2016). Cellulosic butanol (ABE) biofuel production from sweet sorghum bagasse (SSB): Impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260. Bioenergy Research, 9(4), 1167–1179.CrossRef
114.
Zurück zum Zitat Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1), 22–27.CrossRef Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1), 22–27.CrossRef
115.
Zurück zum Zitat Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie (International Ed. in English), 55(29), 8164–8215.CrossRef Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie (International Ed. in English), 55(29), 8164–8215.CrossRef
116.
Zurück zum Zitat Romaní, A., Ruiz, H. A., Pereira, F. B., Domingues, L., & Teixeira, J. A. (2013). Fractionation of Eucalyptus globulus wood by glycerol–water pretreatment: Optimization and modeling. Industrial and Engineering Chemistry Research, 52(40), 14342–14352.CrossRef Romaní, A., Ruiz, H. A., Pereira, F. B., Domingues, L., & Teixeira, J. A. (2013). Fractionation of Eucalyptus globulus wood by glycerol–water pretreatment: Optimization and modeling. Industrial and Engineering Chemistry Research, 52(40), 14342–14352.CrossRef
117.
Zurück zum Zitat Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 12, 240.CrossRef Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 12, 240.CrossRef
118.
Zurück zum Zitat Rößiger, B., Röver, R., Unkelbach, G., & Pufky-Heinrich, D. (2017). Production of bio-phenols for industrial application: Scale-up of the base-catalyzed depolymerization of lignin. Green and Sustainable Chemistry, 7(03), 193.CrossRef Rößiger, B., Röver, R., Unkelbach, G., & Pufky-Heinrich, D. (2017). Production of bio-phenols for industrial application: Scale-up of the base-catalyzed depolymerization of lignin. Green and Sustainable Chemistry, 7(03), 193.CrossRef
119.
Zurück zum Zitat Rubio, M., Tortosa, J. F., Quesada, J., & Gómez, D. (1998). Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass and Bioenergy, 15(6), 483–491.CrossRef Rubio, M., Tortosa, J. F., Quesada, J., & Gómez, D. (1998). Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass and Bioenergy, 15(6), 483–491.CrossRef
120.
Zurück zum Zitat Sakdaronnarong, C., Srimarut, N., & Laosiripojana, N. (2015). Polyurethane synthesis from sugarcane bagasse organosolv and Kraft lignin. In Key engineering materials (pp. 527–532). Trans Tech Publ, Switzerland. Sakdaronnarong, C., Srimarut, N., & Laosiripojana, N. (2015). Polyurethane synthesis from sugarcane bagasse organosolv and Kraft lignin. In Key engineering materials (pp. 527–532). Trans Tech Publ, Switzerland.
121.
Zurück zum Zitat Sannigrahi, P., Miller, S. J., & Ragauskas, A. J. (2010). Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research, 345(7), 965–970.CrossRef Sannigrahi, P., Miller, S. J., & Ragauskas, A. J. (2010). Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research, 345(7), 965–970.CrossRef
122.
Zurück zum Zitat Shen, X. J., Wen, J. L., Mei, Q. Q., Chen, X., Sun, D., Yuan, T. Q., & Sun, R. C. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21(2), 275–283.CrossRef Shen, X. J., Wen, J. L., Mei, Q. Q., Chen, X., Sun, D., Yuan, T. Q., & Sun, R. C. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21(2), 275–283.CrossRef
123.
Zurück zum Zitat Siqueira, G., Arantes, V., Saddler, J. N., Ferraz, A., & Milagres, A. M. F. (2017). Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnology for Biofuels, 10, 176.CrossRef Siqueira, G., Arantes, V., Saddler, J. N., Ferraz, A., & Milagres, A. M. F. (2017). Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnology for Biofuels, 10, 176.CrossRef
124.
Zurück zum Zitat Smit, A., & Huijgen, W. (2017). Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chemistry, 19(22), 5505–5514.CrossRef Smit, A., & Huijgen, W. (2017). Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chemistry, 19(22), 5505–5514.CrossRef
125.
Zurück zum Zitat Snelders, J., Dornez, E., Benjelloun-Mlayah, B., Huijgen, W. J., de Wild, P. J., Gosselink, R. J., Gerritsma, J., & Courtin, C. M. (2014). Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresource Technology, 156, 275–282.CrossRef Snelders, J., Dornez, E., Benjelloun-Mlayah, B., Huijgen, W. J., de Wild, P. J., Gosselink, R. J., Gerritsma, J., & Courtin, C. M. (2014). Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresource Technology, 156, 275–282.CrossRef
126.
Zurück zum Zitat Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58.CrossRef Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58.CrossRef
127.
Zurück zum Zitat Sun, Y., & Cheng, J. (2003). Hydrolysis of lignocellulosic materials for ethanol production. Bioresource Technology, 83(1), 1–11.CrossRef Sun, Y., & Cheng, J. (2003). Hydrolysis of lignocellulosic materials for ethanol production. Bioresource Technology, 83(1), 1–11.CrossRef
128.
Zurück zum Zitat Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.CrossRef Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.CrossRef
129.
Zurück zum Zitat Tan, H., Yang, R., Sun, W., & Wang, S. (2009). Peroxide− acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis. Industrial and Engineering Chemistry Research, 49(4), 1473–1479.CrossRef Tan, H., Yang, R., Sun, W., & Wang, S. (2009). Peroxide− acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis. Industrial and Engineering Chemistry Research, 49(4), 1473–1479.CrossRef
130.
Zurück zum Zitat Tang, C., Shan, J., Chen, Y., Zhong, L., Shen, T., Zhu, C., & Ying, H. (2017). Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresource Technology, 232, 222–228.CrossRef Tang, C., Shan, J., Chen, Y., Zhong, L., Shen, T., Zhu, C., & Ying, H. (2017). Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresource Technology, 232, 222–228.CrossRef
131.
Zurück zum Zitat Thi, S., & Lee, K. M. (2019). Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresource Technology, 282, 525–529.CrossRef Thi, S., & Lee, K. M. (2019). Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresource Technology, 282, 525–529.CrossRef
132.
Zurück zum Zitat Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81, 9–18.CrossRef Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81, 9–18.CrossRef
133.
Zurück zum Zitat Tomás-Pejó, E., Fermoso, J., Herrador, E., Hernando, H., Jiménez-Sánchez, S., Ballesteros, M., González-Fernández, C., & Serrano, D. P. (2017). Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel, 199, 403–412.CrossRef Tomás-Pejó, E., Fermoso, J., Herrador, E., Hernando, H., Jiménez-Sánchez, S., Ballesteros, M., González-Fernández, C., & Serrano, D. P. (2017). Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel, 199, 403–412.CrossRef
134.
Zurück zum Zitat Tri, C. L., Khuong, L. D., & Kamei, I. (2018). The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. International Biodeterioration & Biodegradation, 133, 86–92.CrossRef Tri, C. L., Khuong, L. D., & Kamei, I. (2018). The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. International Biodeterioration & Biodegradation, 133, 86–92.CrossRef
135.
Zurück zum Zitat Trinh, L. T. P., Lee, J.-W., & Lee, H.-J. (2016). Acidified glycerol pretreatment for enhanced ethanol production from rice straw. Biomass and Bioenergy, 94, 39–45.CrossRef Trinh, L. T. P., Lee, J.-W., & Lee, H.-J. (2016). Acidified glycerol pretreatment for enhanced ethanol production from rice straw. Biomass and Bioenergy, 94, 39–45.CrossRef
136.
Zurück zum Zitat Vanderghem, C., Brostaux, Y., Jacquet, N., Blecker, C., & Paquot, M. (2012). Optimization of formic/acetic acid delignification of Miscanthus× giganteus for enzymatic hydrolysis using response surface methodology. Industrial Crops and Products, 35(1), 280–286.CrossRef Vanderghem, C., Brostaux, Y., Jacquet, N., Blecker, C., & Paquot, M. (2012). Optimization of formic/acetic acid delignification of Miscanthus× giganteus for enzymatic hydrolysis using response surface methodology. Industrial Crops and Products, 35(1), 280–286.CrossRef
137.
Zurück zum Zitat Vanneste, J., Ennaert, T., Vanhulsel, A., & Sels, B. (2017). Unconventional pretreatment of lignocellulose with low-temperature plasma. ChemSusChem, 10(1), 14–31.CrossRef Vanneste, J., Ennaert, T., Vanhulsel, A., & Sels, B. (2017). Unconventional pretreatment of lignocellulose with low-temperature plasma. ChemSusChem, 10(1), 14–31.CrossRef
138.
Zurück zum Zitat Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S., & Crespo, I. (2000). The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Science and Technology, 34(4), 345–354.CrossRef Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S., & Crespo, I. (2000). The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Science and Technology, 34(4), 345–354.CrossRef
139.
Zurück zum Zitat Villaverde, J. J., Li, J., Ek, M., Ligero, P., & de Vega, A. (2009). Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. Journal of Agricultural and Food Chemistry, 57(14), 6262–6270.CrossRef Villaverde, J. J., Li, J., Ek, M., Ligero, P., & de Vega, A. (2009). Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. Journal of Agricultural and Food Chemistry, 57(14), 6262–6270.CrossRef
140.
Zurück zum Zitat Voelker, S. L., Lachenbruch, B., Meinzer, F. C., & Strauss, S. H. (2011). Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. The New Phytologist, 189(4), 1096–1109.CrossRef Voelker, S. L., Lachenbruch, B., Meinzer, F. C., & Strauss, S. H. (2011). Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. The New Phytologist, 189(4), 1096–1109.CrossRef
141.
Zurück zum Zitat Wang, X., & Rinaldi, R. (2016). Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catalysis Today, 269, 48–55.CrossRef Wang, X., & Rinaldi, R. (2016). Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catalysis Today, 269, 48–55.CrossRef
142.
Zurück zum Zitat Wildschut, J., Smit, A. T., Reith, J. H., & Huijgen, W. J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135, 58–66.CrossRef Wildschut, J., Smit, A. T., Reith, J. H., & Huijgen, W. J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135, 58–66.CrossRef
143.
Zurück zum Zitat Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.CrossRef Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.CrossRef
144.
Zurück zum Zitat Xu, L., & Tschirner, U. W. (2012). Peracetic acid pretreatment of alfalfa stem and aspen biomass. BioResources, 7(1), 0203–0216. Xu, L., & Tschirner, U. W. (2012). Peracetic acid pretreatment of alfalfa stem and aspen biomass. BioResources, 7(1), 0203–0216.
145.
Zurück zum Zitat Xue, B. L., Wen, J. L., & Sun, R. C. (2015). Ethanol organosolv lignin as a reactive filler for acrylamide-based hydrogels. Journal of Applied Polymer Science, 132(40), 42638. Xue, B. L., Wen, J. L., & Sun, R. C. (2015). Ethanol organosolv lignin as a reactive filler for acrylamide-based hydrogels. Journal of Applied Polymer Science, 132(40), 42638.
146.
Zurück zum Zitat Yu, G., Li, B., Liu, C., Zhang, Y., Wang, H., & Mu, X. (2013a). Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Industrial Crops and Products, 50, 750–757.CrossRef Yu, G., Li, B., Liu, C., Zhang, Y., Wang, H., & Mu, X. (2013a). Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Industrial Crops and Products, 50, 750–757.CrossRef
147.
Zurück zum Zitat Yu, H., Xing, Y., Lei, F., Liu, Z., Liu, Z., & Jiang, J. (2014). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv. Bioresource Technology, 167, 46–52.CrossRef Yu, H., Xing, Y., Lei, F., Liu, Z., Liu, Z., & Jiang, J. (2014). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv. Bioresource Technology, 167, 46–52.CrossRef
148.
Zurück zum Zitat Yu, H., You, Y., Lei, F., Liu, Z., Zhang, W., & Jiang, J. (2015). Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield. Bioresource Technology, 187, 161–166.CrossRef Yu, H., You, Y., Lei, F., Liu, Z., Zhang, W., & Jiang, J. (2015). Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield. Bioresource Technology, 187, 161–166.CrossRef
149.
Zurück zum Zitat Yu, H. L., Tang, Y., Xing, Y., Zhu, L.-W., & Jiang, J.-X. (2013b). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide. Bioresource Technology, 147(complete), 29–36.CrossRef Yu, H. L., Tang, Y., Xing, Y., Zhu, L.-W., & Jiang, J.-X. (2013b). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide. Bioresource Technology, 147(complete), 29–36.CrossRef
150.
Zurück zum Zitat Yuan, Z., Wen, Y., & Li, G. (2018). Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresource Technology, 259, 228.CrossRef Yuan, Z., Wen, Y., & Li, G. (2018). Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresource Technology, 259, 228.CrossRef
151.
Zurück zum Zitat Zhang, K., Pei, Z., & Wang, D. (2016a). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.CrossRef Zhang, K., Pei, Z., & Wang, D. (2016a). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.CrossRef
152.
Zurück zum Zitat Zhang, Q., Huang, H., Han, H., Qiu, Z., & Achal, V. (2017). Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy, 135, 32–39.CrossRef Zhang, Q., Huang, H., Han, H., Qiu, Z., & Achal, V. (2017). Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy, 135, 32–39.CrossRef
153.
Zurück zum Zitat Zhang, X., Zhao, W., Li, Y., Li, C., Yuan, Q., & Cheng, G. (2016b). Synergistic effect of pretreatment with dimethyl sulfoxide and an ionic liquid on enzymatic digestibility of white poplar and pine. RSC Advances, 6(67), 62278–62285.CrossRef Zhang, X., Zhao, W., Li, Y., Li, C., Yuan, Q., & Cheng, G. (2016b). Synergistic effect of pretreatment with dimethyl sulfoxide and an ionic liquid on enzymatic digestibility of white poplar and pine. RSC Advances, 6(67), 62278–62285.CrossRef
154.
Zurück zum Zitat Zhang, Y., Ye, Y. Y., Fan, J., & Chang, J. (2013a). Selective production of phenol, guaiacol and 2, 6-dimethoxyphenol by alkaline hydrothermal conversion of lignin. Journal of Biobased Materials and Bioenergy, 7(6), 696–701.CrossRef Zhang, Y., Ye, Y. Y., Fan, J., & Chang, J. (2013a). Selective production of phenol, guaiacol and 2, 6-dimethoxyphenol by alkaline hydrothermal conversion of lignin. Journal of Biobased Materials and Bioenergy, 7(6), 696–701.CrossRef
155.
Zurück zum Zitat Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., & Lynd, L. R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2), 214–223.CrossRef Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., & Lynd, L. R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2), 214–223.CrossRef
156.
Zurück zum Zitat Zhang, Z., Rackemann, D. W., Doherty, W. O., & O’Hara, I. M. (2013b). Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse. Biotechnology for Biofuels, 6(1), 153.CrossRef Zhang, Z., Rackemann, D. W., Doherty, W. O., & O’Hara, I. M. (2013b). Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse. Biotechnology for Biofuels, 6(1), 153.CrossRef
157.
Zurück zum Zitat Zhang, Z., Wong, H. H., Albertson, P. L., Doherty, W. O., & O’Hara, I. M. (2013c). Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology, 138, 14–21.CrossRef Zhang, Z., Wong, H. H., Albertson, P. L., Doherty, W. O., & O’Hara, I. M. (2013c). Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology, 138, 14–21.CrossRef
158.
Zurück zum Zitat Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009a). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139(1), 47–54.CrossRef Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009a). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139(1), 47–54.CrossRef
159.
Zurück zum Zitat Zhao, J., & Chen, H. (2013). Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical Engineering Science, 104, 1036–1044.CrossRef Zhao, J., & Chen, H. (2013). Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical Engineering Science, 104, 1036–1044.CrossRef
160.
Zurück zum Zitat Zhao, X., Cheng, K., & Liu, D. (2009b). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827.CrossRef Zhao, X., Cheng, K., & Liu, D. (2009b). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827.CrossRef
161.
Zurück zum Zitat Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11(3), 567–590.CrossRef Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11(3), 567–590.CrossRef
162.
Zurück zum Zitat Zhao, X., & Liu, D. (2011). Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose. Sheng wu gong cheng xue bao= Chin J Biotechnol, 27(3), 384–392. Zhao, X., & Liu, D. (2011). Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose. Sheng wu gong cheng xue bao= Chin J Biotechnol, 27(3), 384–392.
163.
Zurück zum Zitat Zhao, X., & Liu, D. (2012). Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility–the Formiline process. Bioresource Technology, 117, 25–32.CrossRef Zhao, X., & Liu, D. (2012). Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility–the Formiline process. Bioresource Technology, 117, 25–32.CrossRef
164.
Zurück zum Zitat Zhao, X., Zhang, L., & Liu, D. (2008). Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresource Technology, 99(9), 3729–3736.CrossRef Zhao, X., Zhang, L., & Liu, D. (2008). Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresource Technology, 99(9), 3729–3736.CrossRef
165.
Zurück zum Zitat Zhao, X., Zhang, L., & Liu, D. (2010). Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnology Journal, 5(5), 493–504.CrossRef Zhao, X., Zhang, L., & Liu, D. (2010). Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnology Journal, 5(5), 493–504.CrossRef
166.
Zurück zum Zitat Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6(4), 465–482.CrossRef Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6(4), 465–482.CrossRef
167.
Zurück zum Zitat Zhao, X., Wang, L., & Liu, D. (2007). Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 82(12), 1115–1121.CrossRef Zhao, X., Wang, L., & Liu, D. (2007). Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 82(12), 1115–1121.CrossRef
168.
Zurück zum Zitat Zhao, Z., Chen, X., Ali, M. F., Abdeltawab, A. A., Yakout, S. M., & Yu, G. (2018). Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresource Technology, 263, 325–333.CrossRef Zhao, Z., Chen, X., Ali, M. F., Abdeltawab, A. A., Yakout, S. M., & Yu, G. (2018). Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresource Technology, 263, 325–333.CrossRef
169.
Zurück zum Zitat Zheng, Y., Shi, J., Tu, M., & Cheng, Y.-S. (2017). Principles and development of lignocellulosic biomass pretreatment for biofuels. In Advances in Bioenergy (pp. 1–68). Zheng, Y., Shi, J., Tu, M., & Cheng, Y.-S. (2017). Principles and development of lignocellulosic biomass pretreatment for biofuels. In Advances in Bioenergy (pp. 1–68).
170.
Zurück zum Zitat Zhou, Z., Lei, F., Li, P., & Jiang, J. (2018). Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 115(11), 2683–2702.CrossRef Zhou, Z., Lei, F., Li, P., & Jiang, J. (2018). Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 115(11), 2683–2702.CrossRef
171.
Zurück zum Zitat Zhou, Z., Xue, W., Lei, F., Cheng, Y., Jiang, J., & Sun, D. (2016). Kraft GL-ethanol pretreatment on sugarcane bagasse for effective enzymatic hydrolysis. Industrial Crops and Products, 90, 100–109.CrossRef Zhou, Z., Xue, W., Lei, F., Cheng, Y., Jiang, J., & Sun, D. (2016). Kraft GL-ethanol pretreatment on sugarcane bagasse for effective enzymatic hydrolysis. Industrial Crops and Products, 90, 100–109.CrossRef
Metadaten
Titel
Deconstruction of Lignocellulose Recalcitrance by Organosolv Fractionating Pretreatment for Enzymatic Hydrolysis
verfasst von
Ziyuan Zhou
Dehua Liu
Xuebing Zhao
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_2