Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

16.09.2016

Decoupled, Unconditionally Stable, Higher Order Discretizations for MHD Flow Simulation

verfasst von: Timo Heister, Muhammad Mohebujjaman, Leo G. Rebholz

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose, analyze, and test a new MHD discretization which decouples the system into two Oseen problems at each timestep yet maintains unconditional stability with respect to the time step size, is optimally accurate in space, and behaves like second order in time in practice. The proposed method chooses a parameter \(\theta \in [0,1]\), dependent on the viscosity \(\nu \) and magnetic diffusivity \(\nu _m\), so that the explicit treatment of certain viscous terms does not cause instabilities, and gives temporal accuracy \(O(\Delta t^2 + (1-\theta )|\nu -\nu _m|\Delta t)\). In practice, \(\nu \) and \(\nu _m\) are small, and so the method behaves like second order. When \(\theta =1\), the method reduces to a linearized BDF2 method, but it has been proven by Li and Trenchea that such a method is stable only in the uncommon case of \(\frac{1}{2}< \frac{\nu }{\nu _m} < 2\). For the proposed method, stability and convergence are rigorously proven for appropriately chosen \(\theta \), and several numerical tests are provided that confirm the theory and show the method provides excellent accuracy in cases where usual BDF2 is unstable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akbas, M., Rebholz, L., Tone, F.: A note on the importance of mass conservation in long-time stability of Navier–Stokes equations. Appl. Math. Lett. 45, 98–102 (2015)MathSciNetCrossRefMATH Akbas, M., Rebholz, L., Tone, F.: A note on the importance of mass conservation in long-time stability of Navier–Stokes equations. Appl. Math. Lett. 45, 98–102 (2015)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Arnold, D., Qin, J.: Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations, VII edn, pp. 28–34. IMACS, NewYork (1992) Arnold, D., Qin, J.: Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations, VII edn, pp. 28–34. IMACS, NewYork (1992)
3.
Zurück zum Zitat Barleon, L., Casal, V., Lenhart, L.: MHD flow in liquid-metal-cooled blankets. Fusion Eng. Des. 14, 401–412 (1991)CrossRef Barleon, L., Casal, V., Lenhart, L.: MHD flow in liquid-metal-cooled blankets. Fusion Eng. Des. 14, 401–412 (1991)CrossRef
4.
Zurück zum Zitat Barrow, J.D., Maartens, R., Tsagas, C.G.: Cosmology with inhomogeneous magnetic fields. Phys. Rep. 449, 131–171 (2007)MathSciNetCrossRef Barrow, J.D., Maartens, R., Tsagas, C.G.: Cosmology with inhomogeneous magnetic fields. Phys. Rep. 449, 131–171 (2007)MathSciNetCrossRef
5.
Zurück zum Zitat Benzi, M., Olshanksii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28(6), 2095–2113 (2005)MathSciNetCrossRef Benzi, M., Olshanksii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28(6), 2095–2113 (2005)MathSciNetCrossRef
6.
Zurück zum Zitat Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)CrossRefMATH Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)CrossRefMATH
7.
Zurück zum Zitat Bodenheimer, P., Laughlin, G.P., Rozyczka, M., Yorke, H.W.: Numerical Methods in Astrophysics. Taylor & Francis, New York (2007). Series in Astronomy and AstrophysicsMATH Bodenheimer, P., Laughlin, G.P., Rozyczka, M., Yorke, H.W.: Numerical Methods in Astrophysics. Taylor & Francis, New York (2007). Series in Astronomy and AstrophysicsMATH
8.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (1994). Texts in Applied MathematicsMATH Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (1994). Texts in Applied MathematicsMATH
9.
Zurück zum Zitat Cho, J., Vishniac, E.T.: The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000)CrossRef Cho, J., Vishniac, E.T.: The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000)CrossRef
10.
Zurück zum Zitat Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)CrossRefMATH Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)CrossRefMATH
11.
Zurück zum Zitat Dormy, E., Soward, A.M.: Mathematical aspects of natural dynamos. Grenoble Sciences. Universite Joseph Fourier, Grenoble, VI, Fluid Mechanics of Astrophysics and Geophysics (2007) Dormy, E., Soward, A.M.: Mathematical aspects of natural dynamos. Grenoble Sciences. Universite Joseph Fourier, Grenoble, VI, Fluid Mechanics of Astrophysics and Geophysics (2007)
12.
Zurück zum Zitat Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90, 665–688 (2002)MathSciNetCrossRefMATH Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90, 665–688 (2002)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Font, J.A.: Gerneral Relativistic Hydrodynamics and Magnetohydrodynamics: Hyperbolic System in Relativistic Astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin (2008)MATH Font, J.A.: Gerneral Relativistic Hydrodynamics and Magnetohydrodynamics: Hyperbolic System in Relativistic Astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin (2008)MATH
15.
Zurück zum Zitat Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, 749th edn. Springer, Berlin (1979)CrossRefMATH Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, 749th edn. Springer, Berlin (1979)CrossRefMATH
16.
Zurück zum Zitat Gunzburger, M.: Iterative penalty methods for the Stokes and Navier–Stokes equations. In: Proceedings from Finite Element Analysis in Fluids conference, University of Alabama, Huntsville, pp. 1040–1045 (1989) Gunzburger, M.: Iterative penalty methods for the Stokes and Navier–Stokes equations. In: Proceedings from Finite Element Analysis in Fluids conference, University of Alabama, Huntsville, pp. 1040–1045 (1989)
17.
Zurück zum Zitat Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989) Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989)
18.
Zurück zum Zitat Hashizume, H.: Numerical and experimental research to solve MHD problem in liquid blanket system. Fusion Eng. Des. 81, 1431–1438 (2006)CrossRef Hashizume, H.: Numerical and experimental research to solve MHD problem in liquid blanket system. Fusion Eng. Des. 81, 1431–1438 (2006)CrossRef
20.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)MathSciNetCrossRefMATH Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Hillebrandt, W., Kupka, F.: Interdisciplinary Aspects of Turbulence. Lecture Notes in Physics, 756th edn. Springer, Berlin (2009)CrossRefMATH Hillebrandt, W., Kupka, F.: Interdisciplinary Aspects of Turbulence. Lecture Notes in Physics, 756th edn. Springer, Berlin (2009)CrossRefMATH
22.
Zurück zum Zitat Jones, C.A.: Thermal and compositional convection in the outer core. Treatise Geophys. 8, 131–185 (2007)CrossRef Jones, C.A.: Thermal and compositional convection in the outer core. Treatise Geophys. 8, 131–185 (2007)CrossRef
23.
Zurück zum Zitat Konshin, I.N., Olshanskii, M.A., Vassilevski, YuV: ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier–Stokes equations. SIAM J. Sci. Comp. 37, 2171–2197 (2015)CrossRefMATH Konshin, I.N., Olshanskii, M.A., Vassilevski, YuV: ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier–Stokes equations. SIAM J. Sci. Comp. 37, 2171–2197 (2015)CrossRefMATH
24.
Zurück zum Zitat Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)MATH Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)MATH
25.
Zurück zum Zitat Li, Y., Trenchea, C.: Partitioned second order method for magnetohydrodynamics in Elsasser fields. Submitted (2015) Li, Y., Trenchea, C.: Partitioned second order method for magnetohydrodynamics in Elsasser fields. Submitted (2015)
26.
Zurück zum Zitat Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.: Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13(1), 90–113 (2016) Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.: Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13(1), 90–113 (2016)
27.
Zurück zum Zitat Olson, P.: Experimental dynamos and the dynamics of planetary cores. Ann. Rev. Earth Planet. Sci. 41, 153–181 (2013)CrossRef Olson, P.: Experimental dynamos and the dynamics of planetary cores. Ann. Rev. Earth Planet. Sci. 41, 153–181 (2013)CrossRef
28.
Zurück zum Zitat Punsly, B.: Black Hole Gravitohydrodynamics. Astrophysics and Space Science Library, vol. 355, 2nd edn. Springer, Berlin (2008) Punsly, B.: Black Hole Gravitohydrodynamics. Astrophysics and Space Science Library, vol. 355, 2nd edn. Springer, Berlin (2008)
29.
Zurück zum Zitat Qin, J., Zhang, S.: Stability and approximability of the P1–P0 element for Stokes equation. Int. J. Numer. Methods Fluids 54(5), 497–515 (2007)CrossRef Qin, J., Zhang, S.: Stability and approximability of the P1–P0 element for Stokes equation. Int. J. Numer. Methods Fluids 54(5), 497–515 (2007)CrossRef
30.
Zurück zum Zitat Rebholz, L., Xiao, M.: On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization. Comput. Methods Appl. Mech. Eng. 294, 259–277 (2015)MathSciNetCrossRef Rebholz, L., Xiao, M.: On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization. Comput. Methods Appl. Mech. Eng. 294, 259–277 (2015)MathSciNetCrossRef
31.
Zurück zum Zitat Smolentsev, S., Moreau, R., Buhler, L., Mistrangelo, C.: MHD thermofluid issues of liquid-metal blankets: phenomena and advances. Fusion Eng. Des. 85, 1196–1205 (2010)CrossRef Smolentsev, S., Moreau, R., Buhler, L., Mistrangelo, C.: MHD thermofluid issues of liquid-metal blankets: phenomena and advances. Fusion Eng. Des. 85, 1196–1205 (2010)CrossRef
32.
Zurück zum Zitat Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014)MathSciNetCrossRefMATH Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Wacker, B., Arndt, D., Lube, G.: Nodal-based finite element methods with local projection stabilization for linearized incompressible magnetohydrodynamics. Submitted (2015) Wacker, B., Arndt, D., Lube, G.: Nodal-based finite element methods with local projection stabilization for linearized incompressible magnetohydrodynamics. Submitted (2015)
34.
35.
Metadaten
Titel
Decoupled, Unconditionally Stable, Higher Order Discretizations for MHD Flow Simulation
verfasst von
Timo Heister
Muhammad Mohebujjaman
Leo G. Rebholz
Publikationsdatum
16.09.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0288-4

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe