Skip to main content

2016 | OriginalPaper | Buchkapitel

9. Decoupling Between Structural and Conductivity Relaxation in Aprotic Ionic Liquids

verfasst von : Evgeni Shoifet, Sergey P. Verevkin, Christoph Schick

Erschienen in: Dielectric Properties of Ionic Liquids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For the [CnMIm][NTf2] ionic liquids with n = 4, 6, and 8 the dynamic calorimetric glass transition temperature T g,dyn was determined in a wide frequency range from 10−2 to 105 rad s−1. The calorimetric glass transition temperature or vitrification temperature T g from standard DSC with 10 K min−1 cooling rate was determined too. The obtained value for T g in these ionic liquids is in very good agreement with the calorimetric T g,dyn at 100 s relaxation time. The obtained calorimetric data are compared to conductivity and other relaxation data available in the literature. In a relaxation map at short relaxation times (τ < 1 µs), conductivity relaxation and calorimetric relaxation show a similar behavior. However, at low frequencies a significant decoupling between conductivity and calorimetric data is observed. Similar to other ionic conductors, the conductivity relaxation has a weaker temperature dependency than structural relaxation. Interestingly, there is no break in the conductivity data when crossing T g. This is different from many other systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Moynihan CT, Balitactac N, Boone L, Litovitz TA (1971) Comparison of shear and conductivity relaxation times for concentrated lithium chloride solutions. J Chem Phys 55(6):3013–3019. doi:10.1063/1.1676531 CrossRef Moynihan CT, Balitactac N, Boone L, Litovitz TA (1971) Comparison of shear and conductivity relaxation times for concentrated lithium chloride solutions. J Chem Phys 55(6):3013–3019. doi:10.​1063/​1.​1676531 CrossRef
3.
Zurück zum Zitat Rekhson SM, Mazurin OV (1974) Stress and structural relaxation in Na2O–CaO–SiO2 glass. J Amer Ceramic Soc 57(7):327–328 Rekhson SM, Mazurin OV (1974) Stress and structural relaxation in Na2O–CaO–SiO2 glass. J Amer Ceramic Soc 57(7):327–328
4.
Zurück zum Zitat Stickel F, Fischer EW, Richert R (1996) Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J Chem Phys 104(5):2043–2055CrossRef Stickel F, Fischer EW, Richert R (1996) Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J Chem Phys 104(5):2043–2055CrossRef
5.
Zurück zum Zitat Fujara F, Geil B, Sillescu H, Fleischer G (1992) Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z Physik B 88:195–204CrossRef Fujara F, Geil B, Sillescu H, Fleischer G (1992) Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z Physik B 88:195–204CrossRef
6.
Zurück zum Zitat Cicerone MT, Ediger MD (1996) Enhanced translation of probe molecules in supercooled O-terphenyl—Signature of spatially heterogeneous dynamic. J Chem Phys 104(18):7210–7218CrossRef Cicerone MT, Ediger MD (1996) Enhanced translation of probe molecules in supercooled O-terphenyl—Signature of spatially heterogeneous dynamic. J Chem Phys 104(18):7210–7218CrossRef
7.
Zurück zum Zitat Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and o-terphenyl. J Chem Phys 107(4):1086–1093CrossRef Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and o-terphenyl. J Chem Phys 107(4):1086–1093CrossRef
8.
9.
Zurück zum Zitat Schonhals A, Schlosser E (1993) Relationship between segmental and chain dynamics in polymer melts as studied by dielectric-spectroscopy. Phys Scr T49A:233–236CrossRef Schonhals A, Schlosser E (1993) Relationship between segmental and chain dynamics in polymer melts as studied by dielectric-spectroscopy. Phys Scr T49A:233–236CrossRef
10.
Zurück zum Zitat Schonhals A (1993) Relation between main and normal mode relaxations for polyisoprene studied by dielectric spectroscopy. Macromolecules 26(6):1309–1312CrossRef Schonhals A (1993) Relation between main and normal mode relaxations for polyisoprene studied by dielectric spectroscopy. Macromolecules 26(6):1309–1312CrossRef
11.
Zurück zum Zitat Rozanski SA, Stannarius R, Groothues H, Kremer F (1996) Dielectric properties of the nematic liquid crystal 4-N-pentyl-4′-cyanobiphenyl in porous membranes. Liq Cryst 20(1):59–66CrossRef Rozanski SA, Stannarius R, Groothues H, Kremer F (1996) Dielectric properties of the nematic liquid crystal 4-N-pentyl-4′-cyanobiphenyl in porous membranes. Liq Cryst 20(1):59–66CrossRef
13.
Zurück zum Zitat Jakobsen B, Hecksher T, Christensen T, Olsen NB, Dyre JC, Niss K (2012) Communication: Identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids. J Chem Phys 136(8):081102–081104CrossRef Jakobsen B, Hecksher T, Christensen T, Olsen NB, Dyre JC, Niss K (2012) Communication: Identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids. J Chem Phys 136(8):081102–081104CrossRef
15.
Zurück zum Zitat Wang LM, Richert R (2005) Debye type dielectric relaxation and the glass transition of alcohols. J Phys Chem B Lett 109:11091–11094CrossRef Wang LM, Richert R (2005) Debye type dielectric relaxation and the glass transition of alcohols. J Phys Chem B Lett 109:11091–11094CrossRef
16.
Zurück zum Zitat Schick C, Sukhorukov D, Schönhals A (2001) Comparison of the molecular dynamics of a liquid crystalline side group polymer revealed from temperature modulated DSC and dielectric experiments in the glass transition region. Macromol Chem Phys 202(8):1398–1404CrossRef Schick C, Sukhorukov D, Schönhals A (2001) Comparison of the molecular dynamics of a liquid crystalline side group polymer revealed from temperature modulated DSC and dielectric experiments in the glass transition region. Macromol Chem Phys 202(8):1398–1404CrossRef
17.
Zurück zum Zitat Brás AR, Dionísio M, Huth H, Schick C, Schönhals A (2007) Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopy. Phys Rev E 75:061708CrossRef Brás AR, Dionísio M, Huth H, Schick C, Schönhals A (2007) Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopy. Phys Rev E 75:061708CrossRef
18.
Zurück zum Zitat Krause C, Yin H, Cerclier C, Morineau D, Wurm A, Schick C, Emmerling F, Schonhals A (2012) Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy. Soft Matter 8:11115–11122. doi:10.1039/c2sm25610j CrossRef Krause C, Yin H, Cerclier C, Morineau D, Wurm A, Schick C, Emmerling F, Schonhals A (2012) Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy. Soft Matter 8:11115–11122. doi:10.​1039/​c2sm25610j CrossRef
19.
Zurück zum Zitat Wojnarowska Z, Paluch KJ, Shoifet E, Schick C, Tajber L, Knapik J, Wlodarczyk P, Grzybowska K, Hensel-Bielowka S, Verevkin SP, Paluch M (2015) Molecular origin of enhanced proton conductivity in anhydrous ionic systems. J Am Chem Soc 137(3):1157–1164. doi:10.1021/ja5103458 CrossRef Wojnarowska Z, Paluch KJ, Shoifet E, Schick C, Tajber L, Knapik J, Wlodarczyk P, Grzybowska K, Hensel-Bielowka S, Verevkin SP, Paluch M (2015) Molecular origin of enhanced proton conductivity in anhydrous ionic systems. J Am Chem Soc 137(3):1157–1164. doi:10.​1021/​ja5103458 CrossRef
20.
Zurück zum Zitat Wojnarowska Z, Knapik J, Jacquemin J, Berdzinski S, Strehmel V, Sangoro JR, Paluch M (2015) Effect of pressure on decoupling of ionic conductivity from segmental dynamics in polymerized ionic liquids. Macromolecules 48(23):8660–8666. doi:10.1021/acs.macromol.5b02130 CrossRef Wojnarowska Z, Knapik J, Jacquemin J, Berdzinski S, Strehmel V, Sangoro JR, Paluch M (2015) Effect of pressure on decoupling of ionic conductivity from segmental dynamics in polymerized ionic liquids. Macromolecules 48(23):8660–8666. doi:10.​1021/​acs.​macromol.​5b02130 CrossRef
21.
Zurück zum Zitat Hensel A, Schick C (1998) Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. J Non-Crystal Solids 235–237:510–516CrossRef Hensel A, Schick C (1998) Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. J Non-Crystal Solids 235–237:510–516CrossRef
22.
Zurück zum Zitat Angell CA (1995) Formation of glasses from liquids and biopolymers (Review). Science 267(5206):1924–1935CrossRef Angell CA (1995) Formation of glasses from liquids and biopolymers (Review). Science 267(5206):1924–1935CrossRef
26.
Zurück zum Zitat Griffin PJ, Holt AP, Wang Y, Novikov VN, Sangoro JR, Kremer F, Sokolov AP (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118(3):783–790. doi:10.1021/jp412365n CrossRef Griffin PJ, Holt AP, Wang Y, Novikov VN, Sangoro JR, Kremer F, Sokolov AP (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118(3):783–790. doi:10.​1021/​jp412365n CrossRef
27.
Zurück zum Zitat Iacob C, Sangoro JR, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C, Kremer F (2008) Charge transport and glassy dynamics in imidazole-based liquids. J Chem Phys 129(23):234511. doi:10.1063/1.3040278 CrossRef Iacob C, Sangoro JR, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C, Kremer F (2008) Charge transport and glassy dynamics in imidazole-based liquids. J Chem Phys 129(23):234511. doi:10.​1063/​1.​3040278 CrossRef
29.
Zurück zum Zitat Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88(6):3113–3157. doi:10.1063/1.1286035 CrossRef Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88(6):3113–3157. doi:10.​1063/​1.​1286035 CrossRef
30.
Zurück zum Zitat Bailey NP, Christensen T, Jakobsen B, Niss K, Olsen NB, Pedersen UR, Schrøder TB, Dyre JC (2008) Glass-forming liquids: one or more ‘order’ parameters? J Phys: Condens Matter 20(24):244113. doi:10.1088/0953-8984/20/24/244113 Bailey NP, Christensen T, Jakobsen B, Niss K, Olsen NB, Pedersen UR, Schrøder TB, Dyre JC (2008) Glass-forming liquids: one or more ‘order’ parameters? J Phys: Condens Matter 20(24):244113. doi:10.​1088/​0953-8984/​20/​24/​244113
31.
Zurück zum Zitat Moynihan CT et al (1976) Structural relaxation in vitreous materials. Ann NY Acad Sci 279:15–35CrossRef Moynihan CT et al (1976) Structural relaxation in vitreous materials. Ann NY Acad Sci 279:15–35CrossRef
32.
Zurück zum Zitat Hecksher T, Olsen NB, Nelson KA, Dyre JC, Christensen T (2013) Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers. J Chem Phys 138(12):12A543-512CrossRef Hecksher T, Olsen NB, Nelson KA, Dyre JC, Christensen T (2013) Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers. J Chem Phys 138(12):12A543-512CrossRef
33.
Zurück zum Zitat Russina O, Beiner M, Pappas C, Russina M, Arrighi V, Unruh T, Mullan CL, Hardacre C, Triolo A (2009) Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide. J Phys Chem B 113(25):8469–8474. doi:10.1021/jp900142m CrossRef Russina O, Beiner M, Pappas C, Russina M, Arrighi V, Unruh T, Mullan CL, Hardacre C, Triolo A (2009) Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide. J Phys Chem B 113(25):8469–8474. doi:10.​1021/​jp900142m CrossRef
34.
Zurück zum Zitat Sangoro JR, Iacob C, Naumov S, Valiullin R, Rexhausen H, Hunger J, Buchner R, Strehmel V, Karger J, Kremer F (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681CrossRef Sangoro JR, Iacob C, Naumov S, Valiullin R, Rexhausen H, Hunger J, Buchner R, Strehmel V, Karger J, Kremer F (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681CrossRef
35.
Zurück zum Zitat Kwon H-J, Seo J-A, Iwahashi T, Ouchi Y, Kim D, Kim HK, Hwang Y-H (2013) Study of alkyl chain length dependent characteristics of imidazolium based ionic liquids [CnMIM]+[TFSA]− by Brillouin and dielectric loss spectroscopy. Curr Appl Phys 13(1):271–279. doi:10.1016/j.cap.2012.07.023 CrossRef Kwon H-J, Seo J-A, Iwahashi T, Ouchi Y, Kim D, Kim HK, Hwang Y-H (2013) Study of alkyl chain length dependent characteristics of imidazolium based ionic liquids [CnMIM]+[TFSA] by Brillouin and dielectric loss spectroscopy. Curr Appl Phys 13(1):271–279. doi:10.​1016/​j.​cap.​2012.​07.​023 CrossRef
36.
Zurück zum Zitat Leys J, Wubbenhorst M, Menon CP, Rajesh R, Thoen J, Glorieux C, Nockemann P, Thijs B, Binnemans K, Longuemart S (2008) Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J Chem Phys 128(6):064509CrossRef Leys J, Wubbenhorst M, Menon CP, Rajesh R, Thoen J, Glorieux C, Nockemann P, Thijs B, Binnemans K, Longuemart S (2008) Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J Chem Phys 128(6):064509CrossRef
37.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110. doi:10.1021/jp044626d CrossRef Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110. doi:10.​1021/​jp044626d CrossRef
38.
Zurück zum Zitat Widegren JA, Magee JW (2007) Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J Chem Eng Data 52(6):2331–2338. doi:10.1021/je700329a CrossRef Widegren JA, Magee JW (2007) Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J Chem Eng Data 52(6):2331–2338. doi:10.​1021/​je700329a CrossRef
39.
Zurück zum Zitat Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems. J Non-Crystal Solids 131(1):13–31CrossRef Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems. J Non-Crystal Solids 131(1):13–31CrossRef
40.
Zurück zum Zitat Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201–4209CrossRef Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201–4209CrossRef
42.
43.
Zurück zum Zitat Chan RK, Pathmanathan K, Johari GP (1986) Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures. J Phys Chem 90:6358–6362CrossRef Chan RK, Pathmanathan K, Johari GP (1986) Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures. J Phys Chem 90:6358–6362CrossRef
44.
Zurück zum Zitat Gobrecht H, Hamann K, Willers G (1971) Complex plane analysis of heat capacity of polymers in the glass transition region. J Phys E: Sci Instruments 4:21–23CrossRef Gobrecht H, Hamann K, Willers G (1971) Complex plane analysis of heat capacity of polymers in the glass transition region. J Phys E: Sci Instruments 4:21–23CrossRef
45.
Zurück zum Zitat Corbino OM (1911) Periodische Widerstandsänderungen feiner Metallfäden, die durch Wechselströme zum Glühen gebracht werden, sowie Ableitung ihrer thermischen Eigenschaften bei hoher Temperatur. Physik Zeitschr XII:292–295 Corbino OM (1911) Periodische Widerstandsänderungen feiner Metallfäden, die durch Wechselströme zum Glühen gebracht werden, sowie Ableitung ihrer thermischen Eigenschaften bei hoher Temperatur. Physik Zeitschr XII:292–295
46.
Zurück zum Zitat Corbino OM (1910) Thermische Oszillationen wechselstromdurchflossener Lampen mit dünnem Faden und daraus sich ergebende Anwesenheit geradzahliger Oberschwingungen. Physik Zeitschr XI:413–417 Corbino OM (1910) Thermische Oszillationen wechselstromdurchflossener Lampen mit dünnem Faden und daraus sich ergebende Anwesenheit geradzahliger Oberschwingungen. Physik Zeitschr XI:413–417
47.
Zurück zum Zitat Birge NO, Nagel SR (1987) Wide-frequency specific heat spectrometer. Rev Sci Instrum 58(8):1464–1470CrossRef Birge NO, Nagel SR (1987) Wide-frequency specific heat spectrometer. Rev Sci Instrum 58(8):1464–1470CrossRef
48.
Zurück zum Zitat Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54(25):2674–2677CrossRef Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54(25):2674–2677CrossRef
49.
Zurück zum Zitat Christensen T (1985) The frequency dependence of the specific heat at the glass transition. J Phys (Paris) 46(12):C8-635–C638-637 Christensen T (1985) The frequency dependence of the specific heat at the glass transition. J Phys (Paris) 46(12):C8-635–C638-637
50.
Zurück zum Zitat Christensen T, Olsen NB (1997) How to compare the frequency-dependent adiabatic compressibility with other thermoviscoelastic response functions at the glass-transition. Prog Theor Phys Suppl 126:273–276CrossRef Christensen T, Olsen NB (1997) How to compare the frequency-dependent adiabatic compressibility with other thermoviscoelastic response functions at the glass-transition. Prog Theor Phys Suppl 126:273–276CrossRef
51.
Zurück zum Zitat Christensen T, Olsen NB, Dyre JC (2007) Conventional methods fail to measure c[sub p](omega) of glass-forming liquids. Phys Rev E (Stat Nonlinear Soft Matter Phys) 75(4):041502–041511 Christensen T, Olsen NB, Dyre JC (2007) Conventional methods fail to measure c[sub p](omega) of glass-forming liquids. Phys Rev E (Stat Nonlinear Soft Matter Phys) 75(4):041502–041511
52.
Zurück zum Zitat Christensen T, Olsen NB, Dyre JC (2008) Can the frequency dependent isobaric specific heat be measured by thermal effusion methods? In: AIP conference proceedings, pp 139–141 Christensen T, Olsen NB, Dyre JC (2008) Can the frequency dependent isobaric specific heat be measured by thermal effusion methods? In: AIP conference proceedings, pp 139–141
53.
Zurück zum Zitat Igarashi B, Christensen T, Larsen EH, Olsen NB, Pedersen IH, Rasmussen T, Dyre JC (2008) A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids. Rev Sci Instr 79(4):045105–045113CrossRef Igarashi B, Christensen T, Larsen EH, Olsen NB, Pedersen IH, Rasmussen T, Dyre JC (2008) A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids. Rev Sci Instr 79(4):045105–045113CrossRef
54.
Zurück zum Zitat Roed LA, Niss K, Jakobsen B (2015) Communication: high pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid. J Chem Phys 143(22):221101. doi:10.1063/1.4936867 CrossRef Roed LA, Niss K, Jakobsen B (2015) Communication: high pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid. J Chem Phys 143(22):221101. doi:10.​1063/​1.​4936867 CrossRef
56.
Zurück zum Zitat Jakobsen B, Olsen NB, Christensen T (2010) Frequency-dependent specific heat from thermal effusion in spherical geometry. Phys Rev E 81(6):061505CrossRef Jakobsen B, Olsen NB, Christensen T (2010) Frequency-dependent specific heat from thermal effusion in spherical geometry. Phys Rev E 81(6):061505CrossRef
57.
Zurück zum Zitat Cammenga HK, Eysel W, Gmelin E, Hemminger W, Hohne GWH, Sarge SM (1993) The temperature calibration of scanning calorimeters: Part 2. Calibration substances. Thermochim Acta 219:333–342CrossRef Cammenga HK, Eysel W, Gmelin E, Hemminger W, Hohne GWH, Sarge SM (1993) The temperature calibration of scanning calorimeters: Part 2. Calibration substances. Thermochim Acta 219:333–342CrossRef
58.
Zurück zum Zitat Hohne GWH, Cammenga HK, Eysel W, Gmelin E, Hemminger W (1990) The temperature calibration of scanning calorimeters. Thermochim Acta 160(1):1–12CrossRef Hohne GWH, Cammenga HK, Eysel W, Gmelin E, Hemminger W (1990) The temperature calibration of scanning calorimeters. Thermochim Acta 160(1):1–12CrossRef
59.
Zurück zum Zitat Sarge SM, Gmelin E, Hohne GWH, Cammenga HK, Hemminger W, Eysel W (1994) The caloric calibration of scanning calorimeters. Thermochim Acta 247(2):129–168CrossRef Sarge SM, Gmelin E, Hohne GWH, Cammenga HK, Hemminger W, Eysel W (1994) The caloric calibration of scanning calorimeters. Thermochim Acta 247(2):129–168CrossRef
60.
Zurück zum Zitat Sarge SM, Hemminger W, Gmelin E, Hohne GWH, Cammenga HK, Eysel W (1997) Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal 49:1125–1134CrossRef Sarge SM, Hemminger W, Gmelin E, Hohne GWH, Cammenga HK, Eysel W (1997) Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal 49:1125–1134CrossRef
61.
Zurück zum Zitat Hensel A, Schick C (1997) Temperature calibration of temperature-modulated differential scanning calorimeters. Thermochim Acta 305:229–237CrossRef Hensel A, Schick C (1997) Temperature calibration of temperature-modulated differential scanning calorimeters. Thermochim Acta 305:229–237CrossRef
62.
Zurück zum Zitat Schick C, Jonsson U, Vassilev T, Minakov A, Schawe J, Scherrenberg R, Lörinczy D (2000) Applicability of 8OCB for temperature calibration of temperature modulated calorimeters. Thermochim Acta 347:53–61CrossRef Schick C, Jonsson U, Vassilev T, Minakov A, Schawe J, Scherrenberg R, Lörinczy D (2000) Applicability of 8OCB for temperature calibration of temperature modulated calorimeters. Thermochim Acta 347:53–61CrossRef
63.
Zurück zum Zitat Neuenfeld S, Schick C (2006) Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta 446(1–2):55–65CrossRef Neuenfeld S, Schick C (2006) Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta 446(1–2):55–65CrossRef
64.
Zurück zum Zitat Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377(1–2):193–204CrossRef Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377(1–2):193–204CrossRef
65.
Zurück zum Zitat Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 1. Influence of non-linear thermal response. Thermochim Acta 330:55–64CrossRef Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 1. Influence of non-linear thermal response. Thermochim Acta 330:55–64CrossRef
66.
Zurück zum Zitat Hensel A, Merzlyakov M, Schick C (1998) Nonlinear response in TMDSC. DPG Frühjahrstagung Hensel A, Merzlyakov M, Schick C (1998) Nonlinear response in TMDSC. DPG Frühjahrstagung
67.
Zurück zum Zitat Merzlyakov M, Schick C (2001) Step response analysis in DSC—A fast way to generate heat capacity spectra. Thermochim Acta 380(1):5–12CrossRef Merzlyakov M, Schick C (2001) Step response analysis in DSC—A fast way to generate heat capacity spectra. Thermochim Acta 380(1):5–12CrossRef
69.
Zurück zum Zitat Hohne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal Part 1: basic considerations. Thermochim Acta 391(1–2):51–67CrossRef Hohne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal Part 1: basic considerations. Thermochim Acta 391(1–2):51–67CrossRef
70.
Zurück zum Zitat Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 2: algorithm for amplitude and phase angle correction. Thermochim Acta 330:65–73CrossRef Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 2: algorithm for amplitude and phase angle correction. Thermochim Acta 330:65–73CrossRef
72.
Zurück zum Zitat Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Top 141(1):153–160CrossRef Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Top 141(1):153–160CrossRef
73.
Zurück zum Zitat Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44:2996–3005CrossRef Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44:2996–3005CrossRef
74.
Zurück zum Zitat Huth H, Minakov A, Schick C (2005) High sensitive differential AC-chip calorimeter for nanogram samples. Netsu Sokutei 32(2):70–76 Huth H, Minakov A, Schick C (2005) High sensitive differential AC-chip calorimeter for nanogram samples. Netsu Sokutei 32(2):70–76
75.
Zurück zum Zitat Shoifet E, Chua YZ, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instr 84(7):073903–073912. doi:10.1063/1.4812349 CrossRef Shoifet E, Chua YZ, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instr 84(7):073903–073912. doi:10.​1063/​1.​4812349 CrossRef
76.
Zurück zum Zitat Ahrenberg M, Shoifet E, Whitaker KR, Huth H, Ediger MD, Schick C (2012) Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films. Rev Sci Instr 83(3):033902–033912CrossRef Ahrenberg M, Shoifet E, Whitaker KR, Huth H, Ediger MD, Schick C (2012) Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films. Rev Sci Instr 83(3):033902–033912CrossRef
77.
Zurück zum Zitat Kraftmakher Y (2004) Modulation calorimetry, vol XII. In: Theory and applications. Springer, Berlin Kraftmakher Y (2004) Modulation calorimetry, vol XII. In: Theory and applications. Springer, Berlin
78.
Zurück zum Zitat Sullivan P, Seidel G (1967) AC temperature measurement of changes in heat capacity of beryllium in a magnetic field. Phys Lett 25A(3):229–230 Sullivan P, Seidel G (1967) AC temperature measurement of changes in heat capacity of beryllium in a magnetic field. Phys Lett 25A(3):229–230
81.
Zurück zum Zitat Rivera A, Rössler EA (2006) Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Phys Rev B 73(21):212201CrossRef Rivera A, Rössler EA (2006) Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Phys Rev B 73(21):212201CrossRef
82.
Zurück zum Zitat Griffin P, Agapov AL, Kisliuk A, Sun X-G, Dai S, Novikov VN, Sokolov AP (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114509. doi:10.1063/1.3638269 CrossRef Griffin P, Agapov AL, Kisliuk A, Sun X-G, Dai S, Novikov VN, Sokolov AP (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114509. doi:10.​1063/​1.​3638269 CrossRef
83.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600. doi:10.1021/jp047480r CrossRef Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600. doi:10.​1021/​jp047480r CrossRef
84.
Zurück zum Zitat Bulut S, Eiden P, Beichel W, Slattery JM, Beyersdorff TF, Schubert TJS, Krossing I (2011) Temperature dependence of the viscosity and conductivity of mildly functionalized and non-functionalized [Tf2N]− ionic liquids. ChemPhysChem 12(12):2296–2310. doi:10.1002/cphc.201100214 CrossRef Bulut S, Eiden P, Beichel W, Slattery JM, Beyersdorff TF, Schubert TJS, Krossing I (2011) Temperature dependence of the viscosity and conductivity of mildly functionalized and non-functionalized [Tf2N] ionic liquids. ChemPhysChem 12(12):2296–2310. doi:10.​1002/​cphc.​201100214 CrossRef
85.
Zurück zum Zitat Hempel E, Huth H, Beiner M (2003) Interrelation between side chain crystallization and dynamic glass transitions in higher poly(n-alkyl methacrylates). Thermochim Acta 403(1):105–114CrossRef Hempel E, Huth H, Beiner M (2003) Interrelation between side chain crystallization and dynamic glass transitions in higher poly(n-alkyl methacrylates). Thermochim Acta 403(1):105–114CrossRef
86.
Zurück zum Zitat Donth E (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie, Berlin Donth E (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie, Berlin
Metadaten
Titel
Decoupling Between Structural and Conductivity Relaxation in Aprotic Ionic Liquids
verfasst von
Evgeni Shoifet
Sergey P. Verevkin
Christoph Schick
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-32489-0_9

Neuer Inhalt