Skip to main content

2017 | OriginalPaper | Buchkapitel

Deep Belief Networks and Multiobjective Feature Selection for BCI with Multiresolution Analysis

verfasst von : Julio Ortega, Andrés Ortiz, Pedro Martín-Smith, John Q. Gan, Jesús González-Peñalver

Erschienen in: Advances in Computational Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-dimensional pattern classification problems with a small number of training patterns are difficult. This paper deals with classification of motor imagery tasks for brain-computer interfacing (BCI), which is a hard problem involving a relatively small number of high-dimensional training patterns where curse of dimensionality issue has to be taken into account and feature selection is an important requirement to build a suitable classifier. Evolutionary metaheuristics for feature selection are usually more time-consuming than other alternatives, but their high performances in terms of classification accuracy make them desirable approaches. In this paper, feature selection through a wrapper procedure based on multi-objective optimization is compared with the use of deep belief networks (DBN) that constitute powerful classifiers implementing feature selection implicitly. Two different classifiers, LDA (linear discriminant analysis) and DBN, have been used to classify EEG signals with features extracted by multiresolution analysis (MRA) and selected by a multiobjective evolutionary method that also uses LDA to implement the fitness function of the solutions. The experimental results show that DBNs usually provide better or similar classification performances without requiring an explicit feature selection phase. Nevertheless, the DBN’s classification performance significantly decreases in problems with a very large number of features. Moreover, to achieve high classification rates, it is necessary to determine a suitable structure for the DBN. Therefore, in this paper we also propose a multiobjective approach to tackle this problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)CrossRef Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)CrossRef
2.
Zurück zum Zitat Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007)CrossRef Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007)CrossRef
3.
Zurück zum Zitat Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (2006)MATH Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (2006)MATH
5.
6.
Zurück zum Zitat Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_83 CrossRef Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.​1007/​3-540-45356-3_​83 CrossRef
7.
Zurück zum Zitat Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Hoboken (1998)MATH Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Hoboken (1998)MATH
8.
Zurück zum Zitat Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)CrossRef Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)CrossRef
9.
Zurück zum Zitat Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef
10.
Zurück zum Zitat Smolensky, P.: Parallel distributed processing: explorations in the microstructure of cognition. In: Information Processing in Dynamical Systems: Foundations of Harmony Theory, vol. 1, pp. 194–281. MIT Press, Cambridge (1986) Smolensky, P.: Parallel distributed processing: explorations in the microstructure of cognition. In: Information Processing in Dynamical Systems: Foundations of Harmony Theory, vol. 1, pp. 194–281. MIT Press, Cambridge (1986)
11.
Zurück zum Zitat Hinton, G.E., Sejnowski, T.T.: Learning and relearning in Boltzmann machines. In: Parallel Distributed Processing, vol. 1, pp. 282–317. MIT Press (1986) Hinton, G.E., Sejnowski, T.T.: Learning and relearning in Boltzmann machines. In: Parallel Distributed Processing, vol. 1, pp. 282–317. MIT Press (1986)
12.
Zurück zum Zitat Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(7) (2016) Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(7) (2016)
13.
Zurück zum Zitat Izenman, A.J.: Linear discriminant analysis. In: Izenman, A.J. (ed.) Modern Multivariate Statistical Techniques. Springer Texts in Statistics, pp. 237–280. Springer, Heidelberg (2013)CrossRef Izenman, A.J.: Linear discriminant analysis. In: Izenman, A.J. (ed.) Modern Multivariate Statistical Techniques. Springer Texts in Statistics, pp. 237–280. Springer, Heidelberg (2013)CrossRef
14.
Zurück zum Zitat Ortega, J., Asensio-Cubero, J., Gan, J.Q., Ortiz, A.: Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection. Biomed. Eng. Online 15(1), 73 (2016)CrossRef Ortega, J., Asensio-Cubero, J., Gan, J.Q., Ortiz, A.: Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection. Biomed. Eng. Online 15(1), 73 (2016)CrossRef
15.
Zurück zum Zitat An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 203–210. Springer, Cham (2014). doi:10.1007/978-3-319-09330-7_25 An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 203–210. Springer, Cham (2014). doi:10.​1007/​978-3-319-09330-7_​25
16.
Zurück zum Zitat Ren, Y., Wu, Y.: Convolutional deep belief networks for feature extraction of EEG signal. In: International Joint Conference on Neural Networks (IJCNN), 6–11 July 2014 Ren, Y., Wu, Y.: Convolutional deep belief networks for feature extraction of EEG signal. In: International Joint Conference on Neural Networks (IJCNN), 6–11 July 2014
17.
Zurück zum Zitat Liu, J., Cheng, Y., Zhang, W.: Deep learning EEG response representation for brain-computer interface. In: Proceedings of the 34th Chinese Control Conference, 28–30 July 2015 Liu, J., Cheng, Y., Zhang, W.: Deep learning EEG response representation for brain-computer interface. In: Proceedings of the 34th Chinese Control Conference, 28–30 July 2015
Metadaten
Titel
Deep Belief Networks and Multiobjective Feature Selection for BCI with Multiresolution Analysis
verfasst von
Julio Ortega
Andrés Ortiz
Pedro Martín-Smith
John Q. Gan
Jesús González-Peñalver
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59153-7_3