Skip to main content

2024 | OriginalPaper | Buchkapitel

Deep-Control of Memory via Stochastic Optimal Control and Deep Learning

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this survey work, we introduce Stochastic Differential Delay Equations and their impacts on Stochastic Optimal Control problems. We observe time delay in the dynamics of a state process that may correspond to inertia or memory in a financial system. For such systems, we demonstrate two special approaches to handle delayed control problems by applying the Dynamic Programming Principle. Moreover, we clarify the technical challenges rising as a consequence of the conflict between the path-dependent, infinite-dimensional nature of the problem and the necessity of the Markov property. Furthermore, we present two different Deep Learning algorithms to solve targeted delayed control tasks and illustrate the results for a complete memory portfolio optimization problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bayraktar, E., Keller, C.: Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275, 2096–2161 (2018)MathSciNetCrossRef Bayraktar, E., Keller, C.: Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275, 2096–2161 (2018)MathSciNetCrossRef
2.
Zurück zum Zitat Blechschmidt, J., Ernst, O.: Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitteilungen 44, e202100006 (2021)MathSciNetCrossRef Blechschmidt, J., Ernst, O.: Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitteilungen 44, e202100006 (2021)MathSciNetCrossRef
3.
Zurück zum Zitat Castro, J.: The Kolmogorov infinite dimensional equation in a Hilbert space via deep learning methods. Preprint. ArXiv:2206.06451 (2022) Castro, J.: The Kolmogorov infinite dimensional equation in a Hilbert space via deep learning methods. Preprint. ArXiv:2206.06451 (2022)
4.
Zurück zum Zitat Chang, M., Pang, T., Pemy, M.: Finite difference approximations for stochastic control systems with delay. Stoch. Anal. Appl. 26, 451–470 (2008)MathSciNetCrossRef Chang, M., Pang, T., Pemy, M.: Finite difference approximations for stochastic control systems with delay. Stoch. Anal. Appl. 26, 451–470 (2008)MathSciNetCrossRef
5.
Zurück zum Zitat Chang, M., Pang, T., Pemy, M.: Optimal control of stochastic functional differential equations with a bounded memory. Stochastics Int. J. Probab. Stoch. Process. 80, 69–96 (2008)MathSciNetCrossRef Chang, M., Pang, T., Pemy, M.: Optimal control of stochastic functional differential equations with a bounded memory. Stochastics Int. J. Probab. Stoch. Process. 80, 69–96 (2008)MathSciNetCrossRef
6.
Zurück zum Zitat Chen, C., Sun, D., Chang, C.: Numerical solution of time-delayed optimal control problems by iterative dynamic programming. Optim. Control Appl. Methods 21, 91–105 (2000)MathSciNetCrossRef Chen, C., Sun, D., Chang, C.: Numerical solution of time-delayed optimal control problems by iterative dynamic programming. Optim. Control Appl. Methods 21, 91–105 (2000)MathSciNetCrossRef
7.
Zurück zum Zitat Crandall, M., Lions, P.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)MathSciNetCrossRef Crandall, M., Lions, P.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)MathSciNetCrossRef
8.
Zurück zum Zitat Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. Off. J. Inst. Math. Stat. 44, 1212–1253 (2016)MathSciNet Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. Off. J. Inst. Math. Stat. 44, 1212–1253 (2016)MathSciNet
9.
Zurück zum Zitat Elsanosi, I., Larssen, B.: Optimal consumption under partial observations for a stochastic system with delay. Preprint Series. Pure Mathematics. Nb. No/URN: NBN: No-8076 (2001) Elsanosi, I., Larssen, B.: Optimal consumption under partial observations for a stochastic system with delay. Preprint Series. Pure Mathematics. Nb. No/URN: NBN: No-8076 (2001)
10.
Zurück zum Zitat Elsanosi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stochastics Int. J. Probab. Stoch. Process. 71, 69–89 (2000)MathSciNet Elsanosi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stochastics Int. J. Probab. Stoch. Process. 71, 69–89 (2000)MathSciNet
11.
Zurück zum Zitat Fabbri, G., Gozzi, F., Swiech, A.: Stochastic Optimal Control in Infinite Dimension. Probability and Stochastic Modelling. Springer (2017)CrossRef Fabbri, G., Gozzi, F., Swiech, A.: Stochastic Optimal Control in Infinite Dimension. Probability and Stochastic Modelling. Springer (2017)CrossRef
12.
Zurück zum Zitat Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stoch. 15, 421–459 (2011)MathSciNetCrossRef Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stoch. 15, 421–459 (2011)MathSciNetCrossRef
13.
Zurück zum Zitat Federico, S., Tankov, P.: Finite-dimensional representations for controlled diffusions with delay. Appl. Math. Optim. 71, 165–194 (2015)MathSciNetCrossRef Federico, S., Tankov, P.: Finite-dimensional representations for controlled diffusions with delay. Appl. Math. Optim. 71, 165–194 (2015)MathSciNetCrossRef
14.
Zurück zum Zitat Federico, S., Goldys, B., Gozzi, F.: HJB equations for the optimal control of differential equations with delays and state constraints, I: regularity of viscosity solutions. SIAM J. Control Optim. 48, 4910–4937 (2010) Federico, S., Goldys, B., Gozzi, F.: HJB equations for the optimal control of differential equations with delays and state constraints, I: regularity of viscosity solutions. SIAM J. Control Optim. 48, 4910–4937 (2010)
15.
Zurück zum Zitat Feo, F., Federico, S., Świech, A.: Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models. Preprint. ArXiv:2302.08809 (2023) Feo, F., Federico, S., Świech, A.: Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models. Preprint. ArXiv:2302.08809 (2023)
16.
Zurück zum Zitat Fischer, M., Nappo, G.: Time discretisation and rate of convergence for the optimal control of continuous-time stochastic systems with delay. Appl. Math. Optim. 57, 177–206 (2008)MathSciNetCrossRef Fischer, M., Nappo, G.: Time discretisation and rate of convergence for the optimal control of continuous-time stochastic systems with delay. Appl. Math. Optim. 57, 177–206 (2008)MathSciNetCrossRef
17.
Zurück zum Zitat Fischer, M., Reiss, M.: Discretisation of stochastic control problems for continuous time dynamics with delay. J. Comput. Appl. Math. 205, 969–981 (2007)MathSciNetCrossRef Fischer, M., Reiss, M.: Discretisation of stochastic control problems for continuous time dynamics with delay. J. Comput. Appl. Math. 205, 969–981 (2007)MathSciNetCrossRef
18.
Zurück zum Zitat Fleming, W., Soner, H.: Controlled Markov Processes and Viscosity Solutions. Springer Science & Business Media (2006) Fleming, W., Soner, H.: Controlled Markov Processes and Viscosity Solutions. Springer Science & Business Media (2006)
19.
Zurück zum Zitat Fouque, J., Zhang, Z.: Deep learning methods for mean field control problems with delay. Front. Appl. Math. Stat. 6, 11 (2020)CrossRef Fouque, J., Zhang, Z.: Deep learning methods for mean field control problems with delay. Front. Appl. Math. Stat. 6, 11 (2020)CrossRef
20.
Zurück zum Zitat Germain, M., Pham, H., Warin, X.: Neural networks-based algorithms for stochastic control and PDEs in finance. Preprint. ArXiv:2101.08068 (2021) Germain, M., Pham, H., Warin, X.: Neural networks-based algorithms for stochastic control and PDEs in finance. Preprint. ArXiv:2101.08068 (2021)
21.
Zurück zum Zitat Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing. SIAM J. Control Optim. 55, 2981–3012 (2017)MathSciNetCrossRef Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing. SIAM J. Control Optim. 55, 2981–3012 (2017)MathSciNetCrossRef
22.
Zurück zum Zitat Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control II: Verification theorem and optimal feedbacks. SIAM J. Control Optim. 55, 3013–3038 (2017)MathSciNetCrossRef Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control II: Verification theorem and optimal feedbacks. SIAM J. Control Optim. 55, 3013–3038 (2017)MathSciNetCrossRef
23.
Zurück zum Zitat Gozzi, F., Masiero, F.: Errata: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing, and stochastic optimal control with delay in the control II: verification theorem and optimal feedbacks. SIAM J. Control Optim. 59, 3096–3101 (2021)MathSciNetCrossRef Gozzi, F., Masiero, F.: Errata: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing, and stochastic optimal control with delay in the control II: verification theorem and optimal feedbacks. SIAM J. Control Optim. 59, 3096–3101 (2021)MathSciNetCrossRef
24.
Zurück zum Zitat Gozzi, F., Roma, S., Marinelli, C.: 13 Stochastic Optimal Control of Delay Equations Arising in Advertising Models. Stochastic Partial Differential Equations and Applications-VII, pp. 133 (2005) Gozzi, F., Roma, S., Marinelli, C.: 13 Stochastic Optimal Control of Delay Equations Arising in Advertising Models. Stochastic Partial Differential Equations and Applications-VII, pp. 133 (2005)
25.
Zurück zum Zitat Gozzi, F., Marinelli, C., Savin, S.: On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects. J. Optim. Theory Appl. 142, 291–321 (2009)MathSciNetCrossRef Gozzi, F., Marinelli, C., Savin, S.: On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects. J. Optim. Theory Appl. 142, 291–321 (2009)MathSciNetCrossRef
26.
Zurück zum Zitat Han, J., Hu, R.: Recurrent neural networks for stochastic control problems with delay. Math. Control Signals Syst. 33, 775–795 (2021)MathSciNetCrossRef Han, J., Hu, R.: Recurrent neural networks for stochastic control problems with delay. Math. Control Signals Syst. 33, 775–795 (2021)MathSciNetCrossRef
27.
Zurück zum Zitat Han, J., Jentzen, A., et al.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)MathSciNetCrossRef Han, J., Jentzen, A., et al.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRef
29.
Zurück zum Zitat Ishii, H., Lions, P.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations 83, 26–78 (1990)MathSciNetCrossRef Ishii, H., Lions, P.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations 83, 26–78 (1990)MathSciNetCrossRef
30.
Zurück zum Zitat Kim, J., Yang, I.: Hamilton-Jacobi-Bellman equations for q-learning in continuous time. In: Learning For Dynamics and Control, pp. 739–748 (2020) Kim, J., Yang, I.: Hamilton-Jacobi-Bellman equations for q-learning in continuous time. In: Learning For Dynamics and Control, pp. 739–748 (2020)
31.
Zurück zum Zitat Kushner, H.: Numerical approximations for stochastic systems with delays in the state and control. Stochastics Int. J. Probab. Stoch. Process. 78, 343–376 (2006)MathSciNetCrossRef Kushner, H.: Numerical approximations for stochastic systems with delays in the state and control. Stochastics Int. J. Probab. Stoch. Process. 78, 343–376 (2006)MathSciNetCrossRef
32.
Zurück zum Zitat Kushner, H.: Numerical Methods for Controlled Stochastic Delay Systems. Springer (2008) Kushner, H.: Numerical Methods for Controlled Stochastic Delay Systems. Springer (2008)
33.
Zurück zum Zitat Larssen, B.: Dynamic programming in stochastic control of systems with delay. Stochastics Int. J. Probab. Stoch. Process. 74, 651–673 (2002)MathSciNet Larssen, B.: Dynamic programming in stochastic control of systems with delay. Stochastics Int. J. Probab. Stoch. Process. 74, 651–673 (2002)MathSciNet
34.
Zurück zum Zitat Larssen, B., Risebro, N.: When are HJB-equations in Stochastic Control of Delay Systems Finite Dimensional? Taylor & Francis (2003) Larssen, B., Risebro, N.: When are HJB-equations in Stochastic Control of Delay Systems Finite Dimensional? Taylor & Francis (2003)
35.
Zurück zum Zitat Mohammed, S.: Stochastic Functional Differential Equations. Pitman Advanced Publishing Program (1984) Mohammed, S.: Stochastic Functional Differential Equations. Pitman Advanced Publishing Program (1984)
36.
Zurück zum Zitat Mohammed, S.: Stochastic differential systems with memory: theory, examples and applications. In: Stochastic Analysis and Related Topics VI: Proceedings of the Sixth Oslo—Silivri Workshop Geilo 1996, pp. 1–77 (1998)MathSciNet Mohammed, S.: Stochastic differential systems with memory: theory, examples and applications. In: Stochastic Analysis and Related Topics VI: Proceedings of the Sixth Oslo—Silivri Workshop Geilo 1996, pp. 1–77 (1998)MathSciNet
37.
Zurück zum Zitat Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput. 43, A1221–A1247 (2021)MathSciNetCrossRef Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput. 43, A1221–A1247 (2021)MathSciNetCrossRef
38.
Zurück zum Zitat Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer (2007) Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer (2007)
39.
Zurück zum Zitat Øksendal, B., Sulem, A., Zhang, T.: Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv. Appl. Probab. 43, 572–596 (2011)MathSciNetCrossRef Øksendal, B., Sulem, A., Zhang, T.: Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv. Appl. Probab. 43, 572–596 (2011)MathSciNetCrossRef
40.
Zurück zum Zitat Pang, T., Hussain, A.: A stochastic portfolio optimization model with complete memory. Stoch. Anal. Appl. 35, 742–766 (2017)MathSciNetCrossRef Pang, T., Hussain, A.: A stochastic portfolio optimization model with complete memory. Stoch. Anal. Appl. 35, 742–766 (2017)MathSciNetCrossRef
41.
Zurück zum Zitat Peng, S., Yang, Z.: Anticipated backward stochastic differential equations. Ann. Probab. 37, 877–902 (2009)MathSciNetCrossRef Peng, S., Yang, Z.: Anticipated backward stochastic differential equations. Ann. Probab. 37, 877–902 (2009)MathSciNetCrossRef
42.
Zurück zum Zitat Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Springer Science & Business Media (2009) Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Springer Science & Business Media (2009)
43.
Zurück zum Zitat Savku, E.: Memory and Anticipation: Two main theorems for Markov regime-switching stochastic processes. Preprint. ArXiv:2302.13890 (2023) Savku, E.: Memory and Anticipation: Two main theorems for Markov regime-switching stochastic processes. Preprint. ArXiv:2302.13890 (2023)
44.
Zurück zum Zitat Savku, E., Weber, G.: A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 179, 696–721 (2018)MathSciNetCrossRef Savku, E., Weber, G.: A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 179, 696–721 (2018)MathSciNetCrossRef
45.
Zurück zum Zitat Savku, E., Weber, G.: A regime-switching model with applications to finance: Markovian and Non-Markovian cases. In: Dynamic Economic Problems with Regime Switches, pp. 287–309 (2021) Savku, E., Weber, G.: A regime-switching model with applications to finance: Markovian and Non-Markovian cases. In: Dynamic Economic Problems with Regime Switches, pp. 287–309 (2021)
46.
Zurück zum Zitat Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955 (2020)CrossRef Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955 (2020)CrossRef
47.
Zurück zum Zitat Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer Science & Business Media (1999) Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer Science & Business Media (1999)
Metadaten
Titel
Deep-Control of Memory via Stochastic Optimal Control and Deep Learning
verfasst von
Emel Savku
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.