Skip to main content

2016 | OriginalPaper | Buchkapitel

Deep Ensemble Sparse Regression Network for Alzheimer’s Disease Diagnosis

verfasst von : Heung-Il Suk, Dinggang Shen

Erschienen in: Machine Learning in Medical Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For neuroimaging-based brain disease diagnosis, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of samples. In this paper, we propose a novel framework that utilizes sparse regression models as target-level representation learner and builds a deep convolutional neural network for clinical decision making. Specifically, we first train multiple sparse regression models, each of which has different values of a regularization control parameter, and use the outputs of the trained regression models as target-level representations. Note that sparse regression models trained with different values of a regularization control parameter potentially select different sets of features from the original ones, thereby they have different powers to predict the response values, i.e., a clinical label and clinical scores in our work. We then construct a deep convolutional neural network by taking the target-level representations as input. Our deep network learns to optimally fuse the predicted response variables, i.e., target-level representations, from the same sparse response model(s) and also those from the neighboring sparse response models. To our best knowledge, this is the first work that systematically integrates sparse regression models with deep neural network. In our experiments with ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest classification accuracies in three different tasks of Alzheimer’s disease and mild cognitive impairment identification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use a class indicator vector with zero-one encoding.
 
2
A target-level representation map from multiple sparse regression models becomes \(\mathbf{v}_{1}^{0}\).
 
4
For sparse model training, we used a SLEP toolbox, where it is required for the control parameter to be set between 0 and 1 because its value is internally rescaled [5].
 
Literatur
1.
Zurück zum Zitat Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. In: Advances in Neural Information Processing Systems, vol. 24, pp. 1647–1655 (2011) Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. In: Advances in Neural Information Processing Systems, vol. 24, pp. 1647–1655 (2011)
2.
Zurück zum Zitat Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage 14(6), 1361–1369 (2001)CrossRef Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage 14(6), 1361–1369 (2001)CrossRef
3.
Zurück zum Zitat Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015)
4.
Zurück zum Zitat Kabani, N., MacDonald, D., Holmes, C., Evans, A.: A 3D atlas of the human brain. NeuroImage 7(4), S717 (1998) Kabani, N., MacDonald, D., Holmes, C., Evans, A.: A 3D atlas of the human brain. NeuroImage 7(4), S717 (1998)
5.
Zurück zum Zitat Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009) Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009)
6.
Zurück zum Zitat Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)
7.
Zurück zum Zitat Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRef Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRef
8.
Zurück zum Zitat Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRef Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRef
9.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetMATH
10.
Zurück zum Zitat Suk, H.I., Lee, S.W., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(5), 2569–2587 (2016)CrossRef Suk, H.I., Lee, S.W., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(5), 2569–2587 (2016)CrossRef
11.
Zurück zum Zitat Suk, H.I., Shen, D.: Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Front. Aging Neurosci. 6, 168 (2014)CrossRef Suk, H.I., Shen, D.: Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Front. Aging Neurosci. 6, 168 (2014)CrossRef
12.
Zurück zum Zitat Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L.: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 115–123. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23626-6_15 CrossRef Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L.: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 115–123. Springer, Heidelberg (2011). doi:10.​1007/​978-3-642-23626-6_​15 CrossRef
13.
Zurück zum Zitat Yuan, L., Wang, Y., Thompson, P.M., Narayan, V.A., Ye, J.: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61(3), 622–632 (2012)CrossRef Yuan, L., Wang, Y., Thompson, P.M., Narayan, V.A., Ye, J.: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61(3), 622–632 (2012)CrossRef
14.
Zurück zum Zitat Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)CrossRef Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)CrossRef
15.
Zurück zum Zitat Zhou, J., Liu, J., Narayan, V.A., Ye, J.: Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1095–1103 (2012) Zhou, J., Liu, J., Narayan, V.A., Ye, J.: Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1095–1103 (2012)
Metadaten
Titel
Deep Ensemble Sparse Regression Network for Alzheimer’s Disease Diagnosis
verfasst von
Heung-Il Suk
Dinggang Shen
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-47157-0_14