Skip to main content
Erschienen in:

13.10.2022

Deep, Flexible Data Embedding with Graph-Based Feature Propagation for Semi-supervised Classification

verfasst von: Fadi Dornaika

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph-based data representation has recently received much attention in the fields of machine learning and cognitive computation. Deep architectures and the semi-supervised learning paradigm are very closely related to natural cognitive systems. In this paper, and in the context of semi-supervised learning, we will be addressing deep graph-based data representation using a cascade of flexible embedding based on feature propagation over graphs. Inspired by connectionist models, we developed a deep architecture that performs data representation. In each layer, a graph is created over the current representation of the data. This graph is used to aggregate the current features of the input data and provide a layer-specific linear and non-linear representation. The semi-supervised scheme presented simultaneously satisfies several desired properties. These include graph-based regularization of the data structure — a geometrically motivated criterion, flexible non-linear projection (i.e., linear and non-linear projections are jointly estimated), graph-based feature propagation (providing a low-pass filter of the features in each layer), and deep architecture. Our work’s main innovative aspect stems from the fact that each layer employs feature propagation (aggregation) before solving the layer-by-layer projection transformations. The proposed model can be learned layer by layer. In each layer, the non-linear data representation and linear regression are jointly estimated with a closed form solution. The proposed method was evaluated using semi-supervised classification tasks with six image datasets. These experiments demonstrated the effectiveness of the proposed approach, which can compete with a variety of competing semi-supervised methods. Compared to a flexible scheme for data representation, the introduced method improved the performance by 8.5% on average. Compared to a recent deep scheme for data representation, the introduced feature propagation improved the performance by 1.3% on average. The use of feature propagation in each layer can improve the flexible model’s performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Greene M, Hansen B. Shared spatiotemporal category representations in biological and artificial deep neural networks. PLoS Comput Biol. 2018;14(7). Greene M, Hansen B. Shared spatiotemporal category representations in biological and artificial deep neural networks. PLoS Comput Biol. 2018;14(7).
2.
Zurück zum Zitat Malakhova EY. Information representation space in artificial and biological neural networks. J Opt Technol. 2020;87(10):598–603.CrossRef Malakhova EY. Information representation space in artificial and biological neural networks. J Opt Technol. 2020;87(10):598–603.CrossRef
3.
Zurück zum Zitat Taylor P, Hobbs J, Burroni J, et al. The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions. Sci Rep 2015;5. Taylor P, Hobbs J, Burroni J, et al. The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions. Sci Rep 2015;5.
4.
Zurück zum Zitat Barrett DG, Morcos AS, Macke JH. Analyzing biological and artificial neural networks: challenges with opportunities for synergy? Curr Opin Neurobiol. 2019;55:55–64.CrossRef Barrett DG, Morcos AS, Macke JH. Analyzing biological and artificial neural networks: challenges with opportunities for synergy? Curr Opin Neurobiol. 2019;55:55–64.CrossRef
5.
Zurück zum Zitat Cichy RM, Kaiser D. Deep neural networks as scientific models. Trends Cogn Sci. 2019;23:305–17.CrossRef Cichy RM, Kaiser D. Deep neural networks as scientific models. Trends Cogn Sci. 2019;23:305–17.CrossRef
6.
Zurück zum Zitat Alzubi J, Jain R, Kathuria A, Khandelwal A, Saxena A, Singh A. Paraphrase identification using collaborative adversarial networks. J Intell Fuzzy Syst. 2020;39:1021–32.CrossRef Alzubi J, Jain R, Kathuria A, Khandelwal A, Saxena A, Singh A. Paraphrase identification using collaborative adversarial networks. J Intell Fuzzy Syst. 2020;39:1021–32.CrossRef
7.
Zurück zum Zitat Movassagh A, Alzubi J, Gheisar M, Rahimi M, Mohan S, Abbasi A, Nabipour N. Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput. 2021. Movassagh A, Alzubi J, Gheisar M, Rahimi M, Mohan S, Abbasi A, Nabipour N. Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput. 2021.
8.
Zurück zum Zitat Zhou L, Rueda M, Alkhateeb A. Classification of breast cancer Nottingham prognostic index using high-dimensional embedding and residual neural network. Cancers. 2022;14(4). Zhou L, Rueda M, Alkhateeb A. Classification of breast cancer Nottingham prognostic index using high-dimensional embedding and residual neural network. Cancers. 2022;14(4).
9.
Zurück zum Zitat Liu Z, Pan Q, Dezert J, Mercier G. Hybrid classification system for uncertain data. IEEE Trans Syst Man Cybern Syst Hum. 2017;47(10):2783–90.CrossRef Liu Z, Pan Q, Dezert J, Mercier G. Hybrid classification system for uncertain data. IEEE Trans Syst Man Cybern Syst Hum. 2017;47(10):2783–90.CrossRef
10.
Zurück zum Zitat Wu Z, Liu S, Ding C, Ren Z, Xie S. Learning graph similarity with large spectral gap. IEEE Trans Syst Man Cybern Syst. 2020. p. 1–11. Wu Z, Liu S, Ding C, Ren Z, Xie S. Learning graph similarity with large spectral gap. IEEE Trans Syst Man Cybern Syst. 2020. p. 1–11.
11.
Zurück zum Zitat Passalis N, Tefas A. Learning neural bag-of-features for large-scale image retrieval. IEEE Trans Syst Man Cybern Syst Hum. 2017;47(10):2641–52.CrossRefMATH Passalis N, Tefas A. Learning neural bag-of-features for large-scale image retrieval. IEEE Trans Syst Man Cybern Syst Hum. 2017;47(10):2641–52.CrossRefMATH
12.
Zurück zum Zitat Kejani MT, Dornaika F, Talebi H. Graph convolution networks with manifold regularization for semi-supervised learning. Neural Netw. 2020;127:160–7.CrossRef Kejani MT, Dornaika F, Talebi H. Graph convolution networks with manifold regularization for semi-supervised learning. Neural Netw. 2020;127:160–7.CrossRef
13.
Zurück zum Zitat Wang S, Zhu W. Sparse graph embedding unsupervised feature selection. IEEE Trans Syst Man Cybern Syst Hum. 2018;48(3):329–41.CrossRef Wang S, Zhu W. Sparse graph embedding unsupervised feature selection. IEEE Trans Syst Man Cybern Syst Hum. 2018;48(3):329–41.CrossRef
14.
Zurück zum Zitat Wu Q, Wang Z, Deng F, Chi Z, Feng DD. Realistic human action recognition with multimodal feature selection and fusion. IEEE Trans Syst Man Cybern Syst Hum. 2013;43(4):875–85.CrossRef Wu Q, Wang Z, Deng F, Chi Z, Feng DD. Realistic human action recognition with multimodal feature selection and fusion. IEEE Trans Syst Man Cybern Syst Hum. 2013;43(4):875–85.CrossRef
15.
Zurück zum Zitat Zhu R, Dornaika F, Ruichek Y. Joint graph based embedding and feature weighting for image classification. Pattern Recogn. 2019;93:458–69.CrossRefMATH Zhu R, Dornaika F, Ruichek Y. Joint graph based embedding and feature weighting for image classification. Pattern Recogn. 2019;93:458–69.CrossRefMATH
16.
Zurück zum Zitat Zhu R, Dornaika F, Ruichek Y. Learning a discriminant graph-based embedding with feature selection for image categorization. Neural Netw. 2019;111:35–46.CrossRefMATH Zhu R, Dornaika F, Ruichek Y. Learning a discriminant graph-based embedding with feature selection for image categorization. Neural Netw. 2019;111:35–46.CrossRefMATH
17.
Zurück zum Zitat Ma X, Liu W, Tao D, et al. Ensemble p-Laplacian regularization for scene image recognition. Cogn Comput. 2019;11:841–54.CrossRef Ma X, Liu W, Tao D, et al. Ensemble p-Laplacian regularization for scene image recognition. Cogn Comput. 2019;11:841–54.CrossRef
18.
Zurück zum Zitat Zhang Q, Zhong G, Dong J. A graph-based semi-supervised multi-label learning method based on label correlation consistency. Cogn Comput. 2021;13:1564–73.CrossRef Zhang Q, Zhong G, Dong J. A graph-based semi-supervised multi-label learning method based on label correlation consistency. Cogn Comput. 2021;13:1564–73.CrossRef
19.
Zurück zum Zitat Yang L, Song S, Li S, Chen Y, Huang G. Graph embedding-based dimension reduction with extreme learning machine. IEEE Trans Syst Man Cybern Syst. 2020. p. 1–12. Yang L, Song S, Li S, Chen Y, Huang G. Graph embedding-based dimension reduction with extreme learning machine. IEEE Trans Syst Man Cybern Syst. 2020. p. 1–12.
20.
Zurück zum Zitat Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations. 2017. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations. 2017.
21.
Zurück zum Zitat Li Y, Wang Y, Yu D-J, Ye N, Hu P, Zhao R. Ascent: active supervision for semi-supervised learning. IEEE Trans Knowl Data Eng. 2020;32(5):868–82.CrossRef Li Y, Wang Y, Yu D-J, Ye N, Hu P, Zhao R. Ascent: active supervision for semi-supervised learning. IEEE Trans Knowl Data Eng. 2020;32(5):868–82.CrossRef
22.
Zurück zum Zitat Zhang T, Zhu T, Li J, Han M, Zhou W, Yu P. Fairness in semi-supervised learning: unlabeled data help to reduce discrimination. IEEE Trans Knowl Data Eng. 2020. p. 1–1. Zhang T, Zhu T, Li J, Han M, Zhou W, Yu P. Fairness in semi-supervised learning: unlabeled data help to reduce discrimination. IEEE Trans Knowl Data Eng. 2020. p. 1–1.
23.
Zurück zum Zitat Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B. Learning with local and global consistency. In: Advances in Neural Information Processing Systems. 2004. p. 321–328. Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B. Learning with local and global consistency. In: Advances in Neural Information Processing Systems. 2004. p. 321–328.
24.
Zurück zum Zitat Zhu X, Ghahramani Z, Lafferty JD. Semi-supervised learning using Gaussian fields and harmonic functions. In: International Conference on Machine Learning. 2003. p. 912–19. Zhu X, Ghahramani Z, Lafferty JD. Semi-supervised learning using Gaussian fields and harmonic functions. In: International Conference on Machine Learning. 2003. p. 912–19.
25.
Zurück zum Zitat Cai D, He X, Han J. Semi-supervised discriminant analysis. In: IEEE International Conference on Computer Vision. 2007. p. 1–7. Cai D, He X, Han J. Semi-supervised discriminant analysis. In: IEEE International Conference on Computer Vision. 2007. p. 1–7.
26.
Zurück zum Zitat Hou C, Nie F, Li X, Yi D, Wu Y. Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern. 2014;44(6):793–804.CrossRef Hou C, Nie F, Li X, Yi D, Wu Y. Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern. 2014;44(6):793–804.CrossRef
27.
Zurück zum Zitat Nie F, Cai G, Li J, Li X. Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process. 2018;27(3):1501–11.MathSciNetCrossRefMATH Nie F, Cai G, Li J, Li X. Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process. 2018;27(3):1501–11.MathSciNetCrossRefMATH
28.
Zurück zum Zitat Nie F, Xu D, Tsang IW-H, Zhang C. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process. 2010;19(7):1921–32.MathSciNetCrossRefMATH Nie F, Xu D, Tsang IW-H, Zhang C. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process. 2010;19(7):1921–32.MathSciNetCrossRefMATH
29.
Zurück zum Zitat El Traboulsi Y, Dornaika F, Assoum A. Kernel flexible manifold embedding for pattern classification. Neurocomputing. 2015;167:517–27.CrossRefMATH El Traboulsi Y, Dornaika F, Assoum A. Kernel flexible manifold embedding for pattern classification. Neurocomputing. 2015;167:517–27.CrossRefMATH
30.
Zurück zum Zitat Dornaika F, El Traboulsi Y. Margin based semi-supervised elastic embedding for face image analysis. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. p. 1313–20. Dornaika F, El Traboulsi Y. Margin based semi-supervised elastic embedding for face image analysis. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. p. 1313–20.
31.
Zurück zum Zitat Nie F, Wang Z, Wang R, Li X. Submanifold-preserving discriminant analysis with an auto-optimized graph. IEEE Transactions on Cybernetics. 2020;50(8):3682–95.CrossRef Nie F, Wang Z, Wang R, Li X. Submanifold-preserving discriminant analysis with an auto-optimized graph. IEEE Transactions on Cybernetics. 2020;50(8):3682–95.CrossRef
32.
Zurück zum Zitat Nie F, Dong X, Li X. Unsupervised and semisupervised projection with graph optimization. IEEE Trans Neural Netw Learn Syst. 2020;2020. Nie F, Dong X, Li X. Unsupervised and semisupervised projection with graph optimization. IEEE Trans Neural Netw Learn Syst. 2020;2020.
33.
Zurück zum Zitat Yang Y, Zhan D-C, Wu Y-F, Liu Z-B, Xiong H, Jiang Y. Semi-supervised multi-modal clustering and classification with incomplete modalities. IEEE Trans Knowl Data Eng. 2021;33(2):682–95. Yang Y, Zhan D-C, Wu Y-F, Liu Z-B, Xiong H, Jiang Y. Semi-supervised multi-modal clustering and classification with incomplete modalities. IEEE Trans Knowl Data Eng. 2021;33(2):682–95.
34.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.CrossRef
35.
Zurück zum Zitat Peng H, Du B, Liu M, Liu M, Ji S, Wang S, Zhang X, He L. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inform Sci. 2021;578:401–16.MathSciNetCrossRef Peng H, Du B, Liu M, Liu M, Ji S, Wang S, Zhang X, He L. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inform Sci. 2021;578:401–16.MathSciNetCrossRef
36.
Zurück zum Zitat Tang J, Gao X, Hu W. RGLN: robust residual graph learning networks via similarity-preserving mapping on graphs. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. Tang J, Gao X, Hu W. RGLN: robust residual graph learning networks via similarity-preserving mapping on graphs. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021.
38.
Zurück zum Zitat Tolstikhin IO, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, Yung J, Steiner A, Keysers D, Uszkoreit J, Lucic M, Dosovitskiy A. MLP-mixer: an all-MLP architecture for vision. arXiv:210501601v4. 2021. Available from: http://arxiv.org/abs/210501601v4. Tolstikhin IO, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, Yung J, Steiner A, Keysers D, Uszkoreit J, Lucic M, Dosovitskiy A. MLP-mixer: an all-MLP architecture for vision. arXiv:210501601v4. 2021. Available from: http://​arxiv.​org/​abs/​210501601v4.
39.
Zurück zum Zitat Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst. 2021;32(1):4–24.MathSciNetCrossRef Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst. 2021;32(1):4–24.MathSciNetCrossRef
40.
Zurück zum Zitat Yuan Y, Mou L, Lu X. Scene recognition by manifold regularized deep learning architecture. IEEE Trans Neural Netw Learn Syst. 2015;26(10):2222–33.MathSciNetCrossRef Yuan Y, Mou L, Lu X. Scene recognition by manifold regularized deep learning architecture. IEEE Trans Neural Netw Learn Syst. 2015;26(10):2222–33.MathSciNetCrossRef
42.
Zurück zum Zitat Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems. 2017. p. 1024–34. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems. 2017. p. 1024–34.
43.
Zurück zum Zitat Velickovic P, Fedus W, Hamilton WL, Lio P, Bengio Y, Hjelm RD. Deep graph infomax. In: International Conference on Learning Representations. 2019. Velickovic P, Fedus W, Hamilton WL, Lio P, Bengio Y, Hjelm RD. Deep graph infomax. In: International Conference on Learning Representations. 2019.
44.
Zurück zum Zitat Verma V, Qu M, Kawaguchi K, Lamb A, Bengio Y, Kannala J, Tang J. Graphmix: improved training of GNNS for semi-supervised learning. In: AAAI Conference on Artificial Intelligence (AAAI-21). 2021. Verma V, Qu M, Kawaguchi K, Lamb A, Bengio Y, Kannala J, Tang J. Graphmix: improved training of GNNS for semi-supervised learning. In: AAAI Conference on Artificial Intelligence (AAAI-21). 2021.
46.
Zurück zum Zitat Zhu R, Dornaika F, Ruichek Y. Semi-supervised elastic manifold embedding with deep learning architecture. Pattern Recogn. 2020;107:107425. Zhu R, Dornaika F, Ruichek Y. Semi-supervised elastic manifold embedding with deep learning architecture. Pattern Recogn. 2020;107:107425.
47.
Zurück zum Zitat Dornaika F, El Traboulsi Y. Learning flexible graph-based semi-supervised embedding. IEEE Trans Cybern. 2016;46(1):206–18.CrossRef Dornaika F, El Traboulsi Y. Learning flexible graph-based semi-supervised embedding. IEEE Trans Cybern. 2016;46(1):206–18.CrossRef
48.
Zurück zum Zitat Wang F, Zhang C. Label propagation through linear neighborhoods. IEEE Trans Knowl Data Eng. 2008;20(1):55–67.CrossRef Wang F, Zhang C. Label propagation through linear neighborhoods. IEEE Trans Knowl Data Eng. 2008;20(1):55–67.CrossRef
49.
Zurück zum Zitat Liu W, Chang S-F. Robust multi-class transductive learning with graphs. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 381–8. Liu W, Chang S-F. Robust multi-class transductive learning with graphs. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 381–8.
50.
Zurück zum Zitat Yu G, Zhang G, Domeniconi C, Yu Z, You J. Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recogn. 2012;45:1119–35.CrossRefMATH Yu G, Zhang G, Domeniconi C, Yu Z, You J. Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recogn. 2012;45:1119–35.CrossRefMATH
51.
Zurück zum Zitat Cevikalp H, Verbeek JJ, Jurie F, Kläser A. Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: International Conference on Computer Vision Theory and Applications, vol. 1. 2008. p. 489–96. Cevikalp H, Verbeek JJ, Jurie F, Kläser A. Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: International Conference on Computer Vision Theory and Applications, vol. 1. 2008. p. 489–96.
Metadaten
Titel
Deep, Flexible Data Embedding with Graph-Based Feature Propagation for Semi-supervised Classification
verfasst von
Fadi Dornaika
Publikationsdatum
13.10.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10056-w