Skip to main content

2024 | OriginalPaper | Buchkapitel

Deep Friendly Embedding Space for Clustering

verfasst von : Haiwei Hou, Shifei Ding, Xiao Xu, Lili Guo

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep clustering has powerful capabilities of dimensionality reduction and non-linear feature extraction, superior to conventional shallow clustering algorithms. Deep learning and clustering can be unified through one objective function, significantly improving clustering performance. However, the features of embedding space may have redundancy and ignore preserved manifold. Besides, the features lack discriminative, which hinders the clustering performance. To solve the above problems, the paper proposes a novel algorithm that improves the discrimination of features, filters redundant features and protects manifold structures for clustering. Firstly, it reduces the dimensionality in the embedding again to filter redundant and preserve the manifold for the features. Then it improves the discriminative of the representation by reducing the intra-class distance. Performance evaluation is carried out on four benchmark datasets and a case study of engineering applications. Comparing with state-of-the-art algorithms indicates that our algorithm performs favorably and demonstrates good potential for real-world applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saxena, A., Prasad, M., Gupta, A., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)CrossRef Saxena, A., Prasad, M., Gupta, A., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)CrossRef
2.
Zurück zum Zitat Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019) Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)
3.
Zurück zum Zitat Khanal, S.S., Prasad, P.W.C., Alsadoon, A., et al.: A systematic review: machine learning based recommendation systems for e-learning. Educ. Inf. Technol. 25, 2635–2664 (2020)CrossRef Khanal, S.S., Prasad, P.W.C., Alsadoon, A., et al.: A systematic review: machine learning based recommendation systems for e-learning. Educ. Inf. Technol. 25, 2635–2664 (2020)CrossRef
4.
Zurück zum Zitat Li, X., Li, X., Ma, H.: Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal Process. 143, 106825 (2020)CrossRef Li, X., Li, X., Ma, H.: Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal Process. 143, 106825 (2020)CrossRef
5.
Zurück zum Zitat Huang, S., Kang, Z., Xu, Z., et al.: Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 117, 107996 (2021)CrossRef Huang, S., Kang, Z., Xu, Z., et al.: Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 117, 107996 (2021)CrossRef
6.
Zurück zum Zitat Cai, Z., Yang, X., Huang, T., et al.: A new similarity combining reconstruction coefficient with pairwise distance for agglomerative clustering. Inf. Sci. 508, 173–182 (2020)MathSciNetCrossRef Cai, Z., Yang, X., Huang, T., et al.: A new similarity combining reconstruction coefficient with pairwise distance for agglomerative clustering. Inf. Sci. 508, 173–182 (2020)MathSciNetCrossRef
7.
Zurück zum Zitat Chen, X., Hou, D., Han, Y., et al.: Clustering analysis of grid nanoindentation data for cementitious materials. J. Mater. Sci. 56(21), 12238–12255 (2021)CrossRef Chen, X., Hou, D., Han, Y., et al.: Clustering analysis of grid nanoindentation data for cementitious materials. J. Mater. Sci. 56(21), 12238–12255 (2021)CrossRef
8.
Zurück zum Zitat Chen, Y., Zhou, L., Bouguila, N., et al.: BLOCK-DBSCAN: fast clustering for large scale data. Pattern Recogn. 109, 107624 (2021)CrossRef Chen, Y., Zhou, L., Bouguila, N., et al.: BLOCK-DBSCAN: fast clustering for large scale data. Pattern Recogn. 109, 107624 (2021)CrossRef
9.
Zurück zum Zitat Kang, Z., Shi, G., Huang, S., et al.: Multi-graph fusion for multi-view spectral clustering. Knowl.-Based Syst. 189, 105102 (2020)CrossRef Kang, Z., Shi, G., Huang, S., et al.: Multi-graph fusion for multi-view spectral clustering. Knowl.-Based Syst. 189, 105102 (2020)CrossRef
10.
Zurück zum Zitat Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning. PMLR, pp. 478–487 (2016) Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning. PMLR, pp. 478–487 (2016)
11.
Zurück zum Zitat Guo, X., Gao, L., Liu, X., et al.: Improved deep embedded clustering with local structure preservation. IJCAI 1753–1759 (2017) Guo, X., Gao, L., Liu, X., et al.: Improved deep embedded clustering with local structure preservation. IJCAI 1753–1759 (2017)
13.
Zurück zum Zitat Ghasedi Dizaji, K., Herandi, A., Deng, C., et al.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimisation. In: Proceedings of the IEEE International Conference on Computer Vision 2017, pp. 5736–5745 (2017) Ghasedi Dizaji, K., Herandi, A., Deng, C., et al.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimisation. In: Proceedings of the IEEE International Conference on Computer Vision 2017, pp. 5736–5745 (2017)
14.
Zurück zum Zitat Guo, X., Zhu, E., Liu, X., et al.: Deep embedded clustering with data augmentation. In: Asian Conference on Machine Learning. PMLR, pp. 550–565 (2018) Guo, X., Zhu, E., Liu, X., et al.: Deep embedded clustering with data augmentation. In: Asian Conference on Machine Learning. PMLR, pp. 550–565 (2018)
15.
Zurück zum Zitat Opochinsky, Y., Chazan, S.E., Gannot, S., et al.: K-autoencoders deep clustering. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4037–4041. IEEE (2020) Opochinsky, Y., Chazan, S.E., Gannot, S., et al.: K-autoencoders deep clustering. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4037–4041. IEEE (2020)
16.
Zurück zum Zitat Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)MathSciNet Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)MathSciNet
17.
Zurück zum Zitat Caron, M., Bojanowski, P., Joulin, A., et al.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018) Caron, M., Bojanowski, P., Joulin, A., et al.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)
18.
Zurück zum Zitat Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016) Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)
19.
Zurück zum Zitat Huang, D., Wang, C.D., Wu, J.S., et al.: Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1212–1226 (2019)CrossRef Huang, D., Wang, C.D., Wu, J.S., et al.: Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1212–1226 (2019)CrossRef
20.
Zurück zum Zitat Bo D, Wang X, Shi C, et al. Structural deep clustering network. In: Proceedings of The Web Conference 2020. 2020: 1400–1410 Bo D, Wang X, Shi C, et al. Structural deep clustering network. In: Proceedings of The Web Conference 2020. 2020: 1400–1410
21.
Zurück zum Zitat Affeldt, S., Labiod, L., Nadif, M.: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE). Pattern Recogn. 108, 107522 (2020)CrossRef Affeldt, S., Labiod, L., Nadif, M.: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE). Pattern Recogn. 108, 107522 (2020)CrossRef
22.
Zurück zum Zitat Diallo, B., Hu, J., Li, T., et al.: Deep embedding clustering based on contractive autoencoder. Neurocomputing 433, 96–107 (2021)CrossRef Diallo, B., Hu, J., Li, T., et al.: Deep embedding clustering based on contractive autoencoder. Neurocomputing 433, 96–107 (2021)CrossRef
24.
Zurück zum Zitat Yen, G.G., Lin, K.C.: Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Industr. Electron. 47(3), 650–667 (2000)CrossRef Yen, G.G., Lin, K.C.: Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Industr. Electron. 47(3), 650–667 (2000)CrossRef
Metadaten
Titel
Deep Friendly Embedding Space for Clustering
verfasst von
Haiwei Hou
Shifei Ding
Xiao Xu
Lili Guo
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_7