Skip to main content
Erschienen in:

06.03.2023

Deep Intelligence: What AI Should Learn from Nature’s Imagination

verfasst von: Ali A. Minai

Erschienen in: Cognitive Computation | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence (AI) has recently seen explosive growth and remarkable successes in several application areas. However, it is becoming clear that the methods that have made this possible are subject to several limitations that might inhibit progress towards replicating the more general intelligence seen in humans and other animals. In contrast to current AI methods that focus on specific tasks and rely on large amounts of offline data and extensive, slow, and mostly supervised learning, this natural intelligence is quick, versatile, agile, and open-ended. This position paper brings together ideas from neuroscience, evolutionary and developmental biology, and complex systems to analyze why such natural intelligence is possible in animals and suggests that AI should exploit the same strategies to move in a different direction. In particular, it argues that integrated embodiment, modularity, synergy, developmental learning, and evolution are key enablers of natural intelligence and should be at the core of AI systems as well. The analysis in the paper leads to the description of a biologically grounded deep intelligence (DI) framework for understanding natural intelligence and developing a new approach to building more versatile, autonomous, and integrated AI. The paper concludes that the dominant paradigm of AI today is unlikely to lead to truly natural general intelligence and that something like the biologically inspired DI framework is needed for that.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neur Inform Proc Syst. 2007;153–160. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neur Inform Proc Syst. 2007;153–160.
3.
Zurück zum Zitat Hinton GE. Learning multiple layers of representation. Trends Cogn Sci. 2007;11:428–34. Hinton GE. Learning multiple layers of representation. Trends Cogn Sci. 2007;11:428–34.
5.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Adv Neur Inform Proc Syst. 2012. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Adv Neur Inform Proc Syst. 2012.
8.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. Adv Neur Inform Proc Syst 2017. arXiv:1706.03762. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. Adv Neur Inform Proc Syst 2017. arXiv:​1706.​03762.
9.
Zurück zum Zitat Sejnowski TJ. The deep learning revolution. MIT press. 2018. Sejnowski TJ. The deep learning revolution. MIT press. 2018.
10.
Zurück zum Zitat Pearl J, McKenzie D. The book of why: the new science of cause and effect. Basic Books; 2018. Pearl J, McKenzie D. The book of why: the new science of cause and effect. Basic Books; 2018.
12.
Zurück zum Zitat Marcus G, Davis E. Rebooting AI: building artificial intelligence we can trust. Pantheon. 2019. Marcus G, Davis E. Rebooting AI: building artificial intelligence we can trust. Pantheon. 2019.
14.
Zurück zum Zitat Mitchell M. Artificial intelligence: a guide for thinking humans. Strauss and Giroux: Farrar; 2019. Mitchell M. Artificial intelligence: a guide for thinking humans. Strauss and Giroux: Farrar; 2019.
17.
Zurück zum Zitat Minai AA, Braha D, Bar-Yam Y. Complex systems engineering: a new paradigm, in complex engineered systems: science meets technology, D. Braha, A.A. Minai, and Y. Bar-Yam (Eds.). Springer Verlag. 2006;1–22. Minai AA, Braha D, Bar-Yam Y. Complex systems engineering: a new paradigm, in complex engineered systems: science meets technology, D. Braha, A.A. Minai, and Y. Bar-Yam (Eds.). Springer Verlag. 2006;1–22.
18.
Zurück zum Zitat Raff RA. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press. 1996. Raff RA. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press. 1996.
19.
Zurück zum Zitat Schlosser G, Wagner GP (eds.). Modularity in development and evolution. Univer Chic Press. 2004. Schlosser G, Wagner GP (eds.). Modularity in development and evolution. Univer Chic Press. 2004.
20.
Zurück zum Zitat Carroll SB. Endless forms most beautiful: the new science of evo-devo and the making of the animal kingdom. WW Norton & Company. 2005. Carroll SB. Endless forms most beautiful: the new science of evo-devo and the making of the animal kingdom. WW Norton & Company. 2005.
21.
Zurück zum Zitat Wagner A. The origins of evolutionary innovations. Oxford: Oxford University Press; 2011. Wagner A. The origins of evolutionary innovations. Oxford: Oxford University Press; 2011.
24.
Zurück zum Zitat Grossberg S. Conscious mind, resonant brain: how each brain makes a mind. Oxford University Press; 2021. Grossberg S. Conscious mind, resonant brain: how each brain makes a mind. Oxford University Press; 2021.
25.
Zurück zum Zitat d’Avella A, Pai DK. Modularity for sensorimotor control: evidence and a new prediction. J Mot Behav. 2010;42:361–9. d’Avella A, Pai DK. Modularity for sensorimotor control: evidence and a new prediction. J Mot Behav. 2010;42:361–9.
26.
Zurück zum Zitat Geary DC. The origin of mind: evolution of brain, cognition, and general intelligence. Am Psychol Assoc. 2005. Geary DC. The origin of mind: evolution of brain, cognition, and general intelligence. Am Psychol Assoc. 2005.
27.
Zurück zum Zitat Thelen E, Smith LB. A dynamic systems approach to the development of cognition and action. MIT Press; 1994. Thelen E, Smith LB. A dynamic systems approach to the development of cognition and action. MIT Press; 1994.
28.
Zurück zum Zitat Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Bradford Books; 1995. Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Bradford Books; 1995.
29.
Zurück zum Zitat Goldfield EC. Emergent forms: origins and early development of human action and perception. Oxford University Press; 1995. Goldfield EC. Emergent forms: origins and early development of human action and perception. Oxford University Press; 1995.
30.
Zurück zum Zitat Nolfi S, Floreano D. Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT press. 2000. Nolfi S, Floreano D. Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT press. 2000.
31.
Zurück zum Zitat Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E. Autonomous mental development by robots and animals. Science. 2001;291:599–600. Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E. Autonomous mental development by robots and animals. Science. 2001;291:599–600.
32.
Zurück zum Zitat Jin Y, Meng Y. Morphogenetic robotics: a new emerging field in developmental robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Reviews and Applications. 2011;41(2):145–60. Jin Y, Meng Y. Morphogenetic robotics: a new emerging field in developmental robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Reviews and Applications. 2011;41(2):145–60.
33.
Zurück zum Zitat Weng J. Symbolic models and emergent models: a review. IEEE Trans Auton Ment Dev. 2011;4:29–54. Weng J. Symbolic models and emergent models: a review. IEEE Trans Auton Ment Dev. 2011;4:29–54.
34.
Zurück zum Zitat Cangelosi A, Schlesinger M. Developmental Robotics: from babies to robots. MIT Press. 2015. Cangelosi A, Schlesinger M. Developmental Robotics: from babies to robots. MIT Press. 2015.
38.
Zurück zum Zitat Barretto A, Hou S, Borsa D, Silver D, Precup D. Fast reinforcement learning with generalized policy updates. PNAS. 2020;117:30079–87. Barretto A, Hou S, Borsa D, Silver D, Precup D. Fast reinforcement learning with generalized policy updates. PNAS. 2020;117:30079–87.
39.
Zurück zum Zitat Spearman C. General intelligence, objectively determined and measured. Am J Psychol. 1904;15:201–93. Spearman C. General intelligence, objectively determined and measured. Am J Psychol. 1904;15:201–93.
40.
Zurück zum Zitat Cattell EB. Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol. 1963;54:1–22. Cattell EB. Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol. 1963;54:1–22.
41.
Zurück zum Zitat Kahneman D. Thinking fast and slow. Straus and Giroux: Farrar; 2011. Kahneman D. Thinking fast and slow. Straus and Giroux: Farrar; 2011.
42.
Zurück zum Zitat Callebaut W, Rasskin-Gutman D (eds.). Modularity: understanding the development and evolution of natural complex systems. MIT Press. 2005. Callebaut W, Rasskin-Gutman D (eds.). Modularity: understanding the development and evolution of natural complex systems. MIT Press. 2005.
44.
Zurück zum Zitat Dawkins R. The evolution of evolvability, In Langton C. G. (Ed.), Artificial life: the proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems. Addison‐Wesley Publishing Co. 1988;201–220. Dawkins R. The evolution of evolvability, In Langton C. G. (Ed.), Artificial life: the proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems. Addison‐Wesley Publishing Co. 1988;201–220.
46.
Zurück zum Zitat Wagner A. Robustness and evolvability in living systems. Princeton University Press; 2005. Wagner A. Robustness and evolvability in living systems. Princeton University Press; 2005.
48.
Zurück zum Zitat Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the dangers of stochastic parrots: can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21). 2021;610–623. https://doi.org/10.1145/3442188.3445922. Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the dangers of stochastic parrots: can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21). 2021;610–623. https://​doi.​org/​10.​1145/​3442188.​3445922.
49.
Zurück zum Zitat Chen MX, Firat O, Bapna A, Johnson M, Macherey W, Foster GF, Jones L, Parmar N, Schuster M, Chen Z, Wu Y, Hughes M. The best of both worlds: combining recent advances in neural machine translation, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia (Long Papers). 2018;76–86. Chen MX, Firat O, Bapna A, Johnson M, Macherey W, Foster GF, Jones L, Parmar N, Schuster M, Chen Z, Wu Y, Hughes M. The best of both worlds: combining recent advances in neural machine translation, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia (Long Papers). 2018;76–86.
52.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, va den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–9. https://doi.org/10.1038/nature16961.CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, va den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–9. https://​doi.​org/​10.​1038/​nature16961.CrossRef
53.
Zurück zum Zitat Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354–9. https://doi.org/10.1038/nature24270.CrossRef Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354–9. https://​doi.​org/​10.​1038/​nature24270.CrossRef
54.
Zurück zum Zitat Girshick, R.B. (2015) Fast R-CNN, 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448. Girshick, R.B. (2015) Fast R-CNN, 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448.
57.
Zurück zum Zitat Minai AA, Perdoor M, Byadarhaly KV, Vasa S, Iyer LR. A synergistic view of autonomous cognitive systems. Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN’2010). 2010;498–505. Minai AA, Perdoor M, Byadarhaly KV, Vasa S, Iyer LR. A synergistic view of autonomous cognitive systems. Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN’2010). 2010;498–505.
58.
Zurück zum Zitat Braitenberg V. Vehicles: experiments in synthetic psychology. Cambridge, MA: MIT Press; 1984. Braitenberg V. Vehicles: experiments in synthetic psychology. Cambridge, MA: MIT Press; 1984.
59.
Zurück zum Zitat Carlson JM, Doyle J. Complexity and robustness. PNAS. 2002;99(supp. 1):2538–45. Carlson JM, Doyle J. Complexity and robustness. PNAS. 2002;99(supp. 1):2538–45.
61.
Zurück zum Zitat Zador AM. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat Commun. 2019;10:3770. Zador AM. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat Commun. 2019;10:3770.
66.
Zurück zum Zitat Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.
67.
Zurück zum Zitat Hubel DH, Wiesel TN. Brain and visual perception. New York: Oxford Press; 2005. Hubel DH, Wiesel TN. Brain and visual perception. New York: Oxford Press; 2005.
68.
Zurück zum Zitat Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution. NY: John Wiley; 1966. Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution. NY: John Wiley; 1966.
69.
Zurück zum Zitat Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press; 1975. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press; 1975.
70.
Zurück zum Zitat Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Professional. 1989. Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Professional. 1989.
72.
Zurück zum Zitat Stanley K, Miikkulainen R. A taxonomy for artificial embryogeny. Artif Life. 2003;9(2):93–130. Stanley K, Miikkulainen R. A taxonomy for artificial embryogeny. Artif Life. 2003;9(2):93–130.
73.
Zurück zum Zitat Clune J, Beckmann BE, Ofria C, Pennock RT. Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. Proc IEEE Cong Evol Comp. 2009;2764–2771. Clune J, Beckmann BE, Ofria C, Pennock RT. Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. Proc IEEE Cong Evol Comp. 2009;2764–2771.
74.
Zurück zum Zitat Sims K. Evolving virtual creatures. Proceedings of SIGGRAPH '94. 1994;15–22. Sims K. Evolving virtual creatures. Proceedings of SIGGRAPH '94. 1994;15–22.
76.
Zurück zum Zitat Rieffel J, Pollack J. An endosymbiotic model for modular acquisition in stochastic developmental systems. Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALIFE X). 2006. Rieffel J, Pollack J. An endosymbiotic model for modular acquisition in stochastic developmental systems. Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALIFE X). 2006.
77.
Zurück zum Zitat Kirschner MW, Gerhart JC. The plausibility of life: resolving Darwin’s dilemma. Yale University Press; 2005. Kirschner MW, Gerhart JC. The plausibility of life: resolving Darwin’s dilemma. Yale University Press; 2005.
78.
Zurück zum Zitat Gerhart J, Kirschner M. The theory of facilitated variation. PNAS. 2007;104(Supp. 1):8582–9. Gerhart J, Kirschner M. The theory of facilitated variation. PNAS. 2007;104(Supp. 1):8582–9.
79.
Zurück zum Zitat Kimura M. The neutral theory of molecular evolution. Press: Cambridge Univ; 1983. Kimura M. The neutral theory of molecular evolution. Press: Cambridge Univ; 1983.
81.
Zurück zum Zitat Kauffman SA. The origins of order: self-organization and selection in evolution. Oxford University Press; 1993. Kauffman SA. The origins of order: self-organization and selection in evolution. Oxford University Press; 1993.
83.
Zurück zum Zitat Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–22. Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–22.
85.
Zurück zum Zitat Abeles M. Local cortical circuits: an electrophysiological study. Springer; 1982. Abeles M. Local cortical circuits: an electrophysiological study. Springer; 1982.
86.
Zurück zum Zitat Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010;68:362–85. Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010;68:362–85.
87.
Zurück zum Zitat Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4:673–86. Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4:673–86.
88.
Zurück zum Zitat Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006;52:751–66. Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006;52:751–66.
89.
Zurück zum Zitat Grillner S, Deliagina T, Ekeberg O, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 1995;18:270–9. Grillner S, Deliagina T, Ekeberg O, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 1995;18:270–9.
90.
Zurück zum Zitat Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA. Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci. 2005;28:364–70. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA. Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci. 2005;28:364–70.
91.
Zurück zum Zitat Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM. From swimming to walking with a salamander robot driven by a spinal cord model. Science. 2007;315:1416–20. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM. From swimming to walking with a salamander robot driven by a spinal cord model. Science. 2007;315:1416–20.
92.
Zurück zum Zitat Simon HA. Near decomposability and complexity: how a mind resides in a brain, In Morowitz, H.J. and Singer, J.L. (eds). The Mind, the Brain, and Complex Systems, Addison-Wesley. 1995. Simon HA. Near decomposability and complexity: how a mind resides in a brain, In Morowitz, H.J. and Singer, J.L. (eds). The Mind, the Brain, and Complex Systems, Addison-Wesley. 1995.
93.
Zurück zum Zitat Simon HA. Near decomposability and the speed of evolution. Ind Corp Chang. 2002;11:587–99. Simon HA. Near decomposability and the speed of evolution. Ind Corp Chang. 2002;11:587–99.
96.
Zurück zum Zitat Elman JL. Learning and development in neural networks: the importance of starting small. Cognition. 1993;48:71–99. Elman JL. Learning and development in neural networks: the importance of starting small. Cognition. 1993;48:71–99.
100.
Zurück zum Zitat Weng J. Developmental robotics: theory and experiments. Int J Humanoid Rob. 2004;1:199–236. Weng J. Developmental robotics: theory and experiments. Int J Humanoid Rob. 2004;1:199–236.
101.
Zurück zum Zitat Deshpande A, Kumar R, Minai AA, Kumar M. Developmental reinforcement learning of control policy of a quadcopter UAV with thrust vectoring rotors. Proc 2020 Dyn Syst Contr Confer. 5–7 Oct. 2020. https://arxiv.org/abs/2007.07793. Deshpande A, Kumar R, Minai AA, Kumar M. Developmental reinforcement learning of control policy of a quadcopter UAV with thrust vectoring rotors. Proc 2020 Dyn Syst Contr Confer. 5–7 Oct. 2020. https://​arxiv.​org/​abs/​2007.​07793.
103.
Zurück zum Zitat Chiel HJ, Beer RD. The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 1997;20:553–7. Chiel HJ, Beer RD. The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 1997;20:553–7.
104.
Zurück zum Zitat Chemero A. Radical embodied cognitive science. Bradford Books; 2011. Chemero A. Radical embodied cognitive science. Bradford Books; 2011.
105.
Zurück zum Zitat Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics. Science. 2007;318:1088–93. Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics. Science. 2007;318:1088–93.
106.
Zurück zum Zitat Schöner G. The dynamics of neural populations capture the laws of the mind. Top Cogn Sci. 2020;12:1257–71. Schöner G. The dynamics of neural populations capture the laws of the mind. Top Cogn Sci. 2020;12:1257–71.
107.
Zurück zum Zitat Smolensky P. On the proper treatment of connectionism. Behav Brain Sci. 1988;11(1):1–23.MathSciNet Smolensky P. On the proper treatment of connectionism. Behav Brain Sci. 1988;11(1):1–23.MathSciNet
108.
Zurück zum Zitat Descartes R. Meditations on first philosophy. in The Philosophical Writings of René Descartes 2 (1984), translated by J. Cottingham, R. Stoothoff, and D. Murdoch. Cambridge: Camb Univ Press. 1641;1–62. Descartes R. Meditations on first philosophy. in The Philosophical Writings of René Descartes 2 (1984), translated by J. Cottingham, R. Stoothoff, and D. Murdoch. Cambridge: Camb Univ Press. 1641;1–62.
109.
Zurück zum Zitat Hart WD. Dualism. In: Guttenplan S, editor. A companion to the philosophy of mind. Oxford: Blackwell; 1996. p. 265–7. Hart WD. Dualism. In: Guttenplan S, editor. A companion to the philosophy of mind. Oxford: Blackwell; 1996. p. 265–7.
110.
Zurück zum Zitat Eliasmith C. How to build a brain: a neural architecture for biological cognition. Oxford University Press; 2013. Eliasmith C. How to build a brain: a neural architecture for biological cognition. Oxford University Press; 2013.
111.
Zurück zum Zitat Smolensky P. Symbolic functions from neural computation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2012;370(1971):3543–69.MathSciNet Smolensky P. Symbolic functions from neural computation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2012;370(1971):3543–69.MathSciNet
112.
Zurück zum Zitat Besold TR, Garcez ADA, Bader S, Bowman H, Domingos PM, Hitzler P, Kühnberger K, Lamb LC, Lowd D, Lima PMV, de Penning L. Neural-symbolic learning and reasoning: a survey and interpretation. CoRR abs/1711.03902. 2017. arXiv preprint arXiv:1711.03902. Besold TR, Garcez ADA, Bader S, Bowman H, Domingos PM, Hitzler P, Kühnberger K, Lamb LC, Lowd D, Lima PMV, de Penning L. Neural-symbolic learning and reasoning: a survey and interpretation. CoRR abs/1711.03902. 2017. arXiv preprint arXiv:​1711.​03902.
113.
Zurück zum Zitat Schlag, and Schmidhuber, J. Learning to reason with third order tensor products. Adv Neural Inf Process Syst. 2018;2018:9981–93. Schlag, and Schmidhuber, J. Learning to reason with third order tensor products. Adv Neural Inf Process Syst. 2018;2018:9981–93.
114.
Zurück zum Zitat Huang Q, Deng L, Wu D, Liu C, He X. Attentive tensor product learning. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019;1344–1351. Huang Q, Deng L, Wu D, Liu C, He X. Attentive tensor product learning. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019;1344–1351.
116.
Zurück zum Zitat Smolensky P, McCoy RT, Fernadez R, Goldrick M, Gao J. Neurocompositional computing: from the Central Paradox of Cognition to a new generation of AI systems. 2022. arXiv:2205.01128v1 [cs.AI]. Smolensky P, McCoy RT, Fernadez R, Goldrick M, Gao J. Neurocompositional computing: from the Central Paradox of Cognition to a new generation of AI systems. 2022. arXiv:​2205.​01128v1 [cs.AI].
117.
120.
Zurück zum Zitat Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature. 2016;532:453–8. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature. 2016;532:453–8.
123.
Zurück zum Zitat Rugani R, Vallortigara G, Priftis K, Regolin L. Number-space mapping in the newborn chick resembles humans’ mental number line. Science. 2015;347:534–6. Rugani R, Vallortigara G, Priftis K, Regolin L. Number-space mapping in the newborn chick resembles humans’ mental number line. Science. 2015;347:534–6.
128.
Zurück zum Zitat Bruffaerts R, De Deyne S, Meersmans K, Liuzzi AG, Storms G, Vandenberghe R. Redefining the resolution of semantic knowledge in the brain: advances made by the introduction of models of semantics in neuroimaging. Neuroscience and Behavioral Reviews. 2019;103:3–13. Bruffaerts R, De Deyne S, Meersmans K, Liuzzi AG, Storms G, Vandenberghe R. Redefining the resolution of semantic knowledge in the brain: advances made by the introduction of models of semantics in neuroimaging. Neuroscience and Behavioral Reviews. 2019;103:3–13.
129.
Zurück zum Zitat Zeithamova D, Mack ML, Braunlich K, Davis T, Seger CA, van Kesteren MTR, Wutz A. Brain mechanisms of concept learning. J Neurosci. 2019;39(42):8259–66. Zeithamova D, Mack ML, Braunlich K, Davis T, Seger CA, van Kesteren MTR, Wutz A. Brain mechanisms of concept learning. J Neurosci. 2019;39(42):8259–66.
133.
Zurück zum Zitat Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36:181–253. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36:181–253.
137.
Zurück zum Zitat Tresch MC, Saltiel P, Bizzi E. The construction of movement by the spinal cord. Nat Neurosci. 1999;2:162–7. Tresch MC, Saltiel P, Bizzi E. The construction of movement by the spinal cord. Nat Neurosci. 1999;2:162–7.
138.
Zurück zum Zitat d’Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci. 2003;6:300–8. d’Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci. 2003;6:300–8.
139.
Zurück zum Zitat Latash ML, Scholz JP, Schöner G. Toward a new theory of motor synergies. Mot Control. 2007;11:276–308. Latash ML, Scholz JP, Schöner G. Toward a new theory of motor synergies. Mot Control. 2007;11:276–308.
140.
Zurück zum Zitat Byadarhaly KV, Perdoor MC, Minai AA. A modular neural model of motor synergies. Neural Netw. 2012;32:96–108. Byadarhaly KV, Perdoor MC, Minai AA. A modular neural model of motor synergies. Neural Netw. 2012;32:96–108.
141.
Zurück zum Zitat Bernstein N. The coordination and regulation of movements. Pergamon Press; 1967. Bernstein N. The coordination and regulation of movements. Pergamon Press; 1967.
144.
Zurück zum Zitat Brooks R. Cambrian intelligence: the early history of the new AI. MIT Press; 1999. Brooks R. Cambrian intelligence: the early history of the new AI. MIT Press; 1999.
145.
Zurück zum Zitat Schaal S, Peters J, Nakanishi J, Ijspeert A. Control, planning, learning, and imitation with dynamic movement primitives. In: Workshop on bilateral paradigms on humans and humanoids. IEEE International Conference on Intelligent Robots and Systems (IROS 2003). Las Vegas, NV, Oct. 27–31. 2003. Schaal S, Peters J, Nakanishi J, Ijspeert A. Control, planning, learning, and imitation with dynamic movement primitives. In: Workshop on bilateral paradigms on humans and humanoids. IEEE International Conference on Intelligent Robots and Systems (IROS 2003). Las Vegas, NV, Oct. 27–31. 2003.
146.
Zurück zum Zitat Schaal S, Mohajerian P, Ijspeert A. Dynamics systems vs. optimal control – a unifying view. In: P. Cisek, T. Drew and J.F. Kalaska (Eds.). Prog Brain Res. 2007;165:425–445. Schaal S, Mohajerian P, Ijspeert A. Dynamics systems vs. optimal control – a unifying view. In: P. Cisek, T. Drew and J.F. Kalaska (Eds.). Prog Brain Res. 2007;165:425–445.
147.
Zurück zum Zitat Kelso JAS. Synergies: atoms of brain and behavior, In: Progress in motor control – a multidisciplinary perspective, Sternad D. (ed), Springer. 2007. Kelso JAS. Synergies: atoms of brain and behavior, In: Progress in motor control – a multidisciplinary perspective, Sternad D. (ed), Springer. 2007.
148.
Zurück zum Zitat Amit DJ. Modeling brain function. New York: Cambridge University Press; 1989. Amit DJ. Modeling brain function. New York: Cambridge University Press; 1989.
149.
Zurück zum Zitat Yuste R, MacLean JN, Smith J, Lansner A. The cortex as a central pattern generator. Nat Rev Neurosci. 2005;6:477–83. Yuste R, MacLean JN, Smith J, Lansner A. The cortex as a central pattern generator. Nat Rev Neurosci. 2005;6:477–83.
150.
Zurück zum Zitat Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits, PLoS computational biology, 04/2010. 2010;6(4). Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits, PLoS computational biology, 04/2010. 2010;6(4).
152.
Zurück zum Zitat Hawkins J. A thousand brains: a new theory of intelligence. Basic Books; 2021. Hawkins J. A thousand brains: a new theory of intelligence. Basic Books; 2021.
156.
Zurück zum Zitat Tsuda I. Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behavioral and Brain Sciences. 2001;24:793–847. Tsuda I. Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behavioral and Brain Sciences. 2001;24:793–847.
159.
Zurück zum Zitat Marupaka N, Iyer LR, Minai AA. Connectivity and thought: the influence of semantic network structure in a neurodynamical model of thinking. Neural Netw. 2012;32:147–58. Marupaka N, Iyer LR, Minai AA. Connectivity and thought: the influence of semantic network structure in a neurodynamical model of thinking. Neural Netw. 2012;32:147–58.
161.
Zurück zum Zitat Minai AA, Iyer LR, Doumit S, et al. IDEA—itinerant dynamics with emergent attractors: a neural model for conceptual combination. In: Doboli S, et al., editors. Creativity and Innovation: Cognitive, Social, and Computational Approaches. Springer; 2021. p. 195–227. Minai AA, Iyer LR, Doumit S, et al. IDEA—itinerant dynamics with emergent attractors: a neural model for conceptual combination. In: Doboli S, et al., editors. Creativity and Innovation: Cognitive, Social, and Computational Approaches. Springer; 2021. p. 195–227.
164.
Zurück zum Zitat Iyer L, Doboli S, Minai A, Brown V, Levine D, Paulus P. Neural dynamics of idea generation and the effects of priming. Neural Netw. 2009;22:674–86. Iyer L, Doboli S, Minai A, Brown V, Levine D, Paulus P. Neural dynamics of idea generation and the effects of priming. Neural Netw. 2009;22:674–86.
166.
Zurück zum Zitat Iyer LR, Minai AA. CANDID: A neurodynamical model for ddaptive context-dependent idea generation. In: Creativity and innovation. Understanding Complex Systems, Doboli, S., Kenworthy, J.B., Minai, A.A., Paulus, P.B. (eds), Springer, Cham. 2021. https://doi.org/10.1007/978-3-030-77198-0_7. Iyer LR, Minai AA. CANDID: A neurodynamical model for ddaptive context-dependent idea generation. In: Creativity and innovation. Understanding Complex Systems, Doboli, S., Kenworthy, J.B., Minai, A.A., Paulus, P.B. (eds), Springer, Cham. 2021. https://​doi.​org/​10.​1007/​978-3-030-77198-0_​7.
168.
Zurück zum Zitat Pouget A, Snyder LH. Computational approaches to sensorimotor transformations. Nature Neuroscience Supp. 2000;3:1192–8. Pouget A, Snyder LH. Computational approaches to sensorimotor transformations. Nature Neuroscience Supp. 2000;3:1192–8.
169.
Zurück zum Zitat Morse AF, de Greeff J, Belpeame T, Cangelosi A. Epigenetic robotics architecture (ERA). IEEE Trans On Autonomous Mental Development. 2010;2:325–39. Morse AF, de Greeff J, Belpeame T, Cangelosi A. Epigenetic robotics architecture (ERA). IEEE Trans On Autonomous Mental Development. 2010;2:325–39.
171.
Zurück zum Zitat Müller GB. Evo-devo: extending the evolutionary synthesis. Nat Rev Genet. 2007;8:943–9. Müller GB. Evo-devo: extending the evolutionary synthesis. Nat Rev Genet. 2007;8:943–9.
172.
Zurück zum Zitat Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134:25–36. Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134:25–36.
173.
Zurück zum Zitat Gilbert SF, Bosch TCG, Ledón-Retting C. Eco-evo-devo: developmental symbiosis and developmental plasticity as evolutionary agents. 2015. Gilbert SF, Bosch TCG, Ledón-Retting C. Eco-evo-devo: developmental symbiosis and developmental plasticity as evolutionary agents. 2015.
174.
Zurück zum Zitat Marcus G. Kluge: the haphazard evolution of the human mind. Mariner Books. 2009. Marcus G. Kluge: the haphazard evolution of the human mind. Mariner Books. 2009.
175.
Zurück zum Zitat Alabi A, Vanderelst D, Minai AA (in press). Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields, Neural Networks (in press). Alabi A, Vanderelst D, Minai AA (in press). Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields, Neural Networks (in press).
176.
Zurück zum Zitat Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.MathSciNet Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.MathSciNet
177.
Zurück zum Zitat Zhuang F, Zhiyuan Q, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. A comprehensive survey on transfer learning. Proc IEEE. 2021;109:43–76. Zhuang F, Zhiyuan Q, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. A comprehensive survey on transfer learning. Proc IEEE. 2021;109:43–76.
178.
Zurück zum Zitat Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14:147. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14:147.
179.
Zurück zum Zitat Carpenter GA, Grossberg S. ART 2: Self-organization of stable category recognition codes for analog input patterns. Appl Opt. 1987;26:4919–30. Carpenter GA, Grossberg S. ART 2: Self-organization of stable category recognition codes for analog input patterns. Appl Opt. 1987;26:4919–30.
Metadaten
Titel
Deep Intelligence: What AI Should Learn from Nature’s Imagination
verfasst von
Ali A. Minai
Publikationsdatum
06.03.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2024
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10124-9