Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Pattern Recognition and Image Analysis 4/2022

01.12.2022 | APPLIED PROBLEMS

Deep Learning Algorithm for Maximizing the Spectral Efficiency of Wireless Systems

verfasst von: Evgeny Bobrov

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In multiple input multiple output (MIMO) wireless communication systems, neural networks are utilized for resource management, channel decoding, and the finding and assessment of channels. This paper addresses the problem of finding a precoding matrix with a high spectral efficiency (SE) using a variational autoencoder. An optimization procedure for finding optimal precoding matrices is known. The goal of this study is to construct a less time-consuming algorithm than the optimization procedure with minimum loss of quality. As a solution to achieve this goal, two types of variational autoencoders are used to construct precoding matrices: a classical variational autoencoder (VAE) and conditional variational autoencoder (CVAE). Both methods can be used to explore a wide range of optimal precoding matrices. The VAE and CVAE methods make it possible to restore the distribution of the predicted value by sampling random variables from the normal distribution at an intermediate stage of calculations. The construction of precoding matrices and their distribution for the SE objective function using the VAE and CVAE methods is described in a publication for the first time.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
2.
Zurück zum Zitat A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi, and Ch. Studer, “Neural-network optimized 1-bit precoding for massive MU-MIMO,” in  IEEE 20th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019 (IEEE, 2019), pp. 1–5.  https://​doi.​org/​10.​1109/​SPAWC.​2019.​8815519 A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi, and Ch. Studer, “Neural-network optimized 1-bit precoding for massive MU-MIMO,” in  IEEE 20th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019 (IEEE, 2019), pp. 1–5.  https://​doi.​org/​10.​1109/​SPAWC.​2019.​8815519
3.
Zurück zum Zitat E. Bobrov, A. Markov, and D. Vetrov, “Variational autoencoders for precoding matrices with high spectral efficiency,” (2021). arXiv:2111.15626 [eess.SP] E. Bobrov, A. Markov, and D. Vetrov, “Variational autoencoders for precoding matrices with high spectral efficiency,” (2021). arXiv:2111.15626 [eess.SP]
6.
Zurück zum Zitat A. Flaksman, “Adaptive spatial processing in multichannel information systems,” Doctoral Dissertation in Physics and Mathematics (Moscow, 2005). A. Flaksman, “Adaptive spatial processing in multichannel information systems,” Doctoral Dissertation in Physics and Mathematics (Moscow, 2005).
8.
Zurück zum Zitat D. P Kingma and M. Welling, “Auto-encoding variational Bayes,” (2013). arXiv:1312.6114 [stat.ML] D. P Kingma and M. Welling, “Auto-encoding variational Bayes,” (2013). arXiv:1312.6114 [stat.ML]
12.
Zurück zum Zitat Y. Miao, L. Yu, and Ph. Blunsom, “Neural variational inference for text processing,” in ICML’16: Proc. 33rd Int. Conf. on Machine Learning, 2016, Vol. 48, Ed. by M. F. Balcan and K. Q. Weinberger (JMLR.org, 2016), pp. 1727–1736. Y. Miao, L. Yu, and Ph. Blunsom, “Neural variational inference for text processing,” in ICML’16: Proc. 33rd Int. Conf. on Machine Learning, 2016, Vol. 48, Ed. by M. F. Balcan and K. Q. Weinberger (JMLR.org, 2016), pp. 1727–1736.
14.
Zurück zum Zitat A. Pagnoni, K. Liu, and Sh. Li, “Conditional variational autoencoder for neural machine translation” (2018). arXiv:1812.04405 [cs.CL] A. Pagnoni, K. Liu, and Sh. Li, “Conditional variational autoencoder for neural machine translation” (2018). arXiv:1812.04405 [cs.CL]
16.
Zurück zum Zitat A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, Automatic differentiation in PyTorch, in 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, Calif., 2017 (2017), p. 8. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, Automatic differentiation in PyTorch, in 31st Conf. on Neural Information Processing Systems (NIPS 2017), Long Beach, Calif., 2017 (2017), p. 8.
20.
Zurück zum Zitat V. Slyusar, “MIMO systems: Design principles and signal processing,” Elektron.: Nauka, Tekhnol., Biznes, No. 8, 52–58 (2005). V. Slyusar, “MIMO systems: Design principles and signal processing,” Elektron.: Nauka, Tekhnol., Biznes, No. 8, 52–58 (2005).
22.
Zurück zum Zitat C. Güzel Turhan and H. Sakir Bilge, “Variational autoencoded compositional pattern generative adversarial network for handwritten super resolution image generation,” in 3rd Int. Conf. on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018 (IEEE, 2018), pp. 564–568.  https://​doi.​org/​10.​1109/​UBMK.​2018.​8566539 C. Güzel Turhan and H. Sakir Bilge, “Variational autoencoded compositional pattern generative adversarial network for handwritten super resolution image generation,” in 3rd Int. Conf. on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018 (IEEE, 2018), pp. 564–568.  https://​doi.​org/​10.​1109/​UBMK.​2018.​8566539
24.
Zurück zum Zitat V. Vishnevskii, A. I. Lyakhov, S. L. Portnoi, and I. V. Shakhnovich, Wide-Band Wireless Networks for Information Transmission (Tekhnosfera, Moscow, 2005). V. Vishnevskii, A. I. Lyakhov, S. L. Portnoi, and I. V. Shakhnovich, Wide-Band Wireless Networks for Information Transmission (Tekhnosfera, Moscow, 2005).
Metadaten
Titel
Deep Learning Algorithm for Maximizing the Spectral Efficiency of Wireless Systems
verfasst von
Evgeny Bobrov
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2022
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661822040034

Weitere Artikel der Ausgabe 4/2022

Pattern Recognition and Image Analysis 4/2022 Zur Ausgabe

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Subjective Restoration of Omissions in the Measurement Data of an Object of Study and Its Mathematical Model

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Reduction of Video Data at Translation of a Registered Object Relative to Video Sensors Based on the Eigenbasis of Interpretation Model

Premium Partner