Skip to main content

2024 | OriginalPaper | Buchkapitel

Deep Learning Analysis for Skin Cancer Detection

verfasst von : Chandra Singh, Nischitha, Shailesh S. Shetty, Anush Bekal, Sandeep Bhat, Manjunatha Badiger

Erschienen in: Advances in VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present world, skin cancer is the most widely recognized reason for death among people. Skin malignancy is an unusual development of skin cells. Frequently created on the body part exposed to the sunlight; however, it can happen on any place on the body. The majority of the skin malignancy is treatable at the beginning phase. So an early and quick identification of skin disease can spare the patient's life. With the new innovation, early identification of skin malignancy is conceivable at the introductory stage utilizing picture handling. The skin cancer detection using image processing is based on the detection of skin cancer types at its earliest stage. There are many types of skin cancers found. It is difficult to identify the type of skin cancer at the earlier stage, manual identification can often be time consuming and inaccurate. Doctors are able to identify the symptoms of skin cancer but are unable to identify the type of skin cancer in the initial stage. So the doctors will wait until it gets blotted but by that time the disease will become out of control. So a software is developed to help the Skin Cancer Detection at its earliest stage by passing valid input images. So this chapter explains about a method to identify and classify the skin cancer using images using Convolutional Neural Network (CNN) algorithm. The accuracy obtained by using the proposed method is 89%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang G, Shen X, Chen S, Liang L, Luo Y, Yu J, Lu J (2019) Dsm: a deep supervise dmulti-scale network learning for skin cancer segmentation. IEEE Access 7:140936–140945 Zhang G, Shen X, Chen S, Liang L, Luo Y, Yu J, Lu J (2019) Dsm: a deep supervise dmulti-scale network learning for skin cancer segmentation. IEEE Access 7:140936–140945
2.
Zurück zum Zitat Masood A, Al-Jumaily A, Anam K (2015) Self-supervised learning model for skin cancer diagnosis. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER). IEEE, pp 1012–1015 Masood A, Al-Jumaily A, Anam K (2015) Self-supervised learning model for skin cancer diagnosis. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER). IEEE, pp 1012–1015
3.
Zurück zum Zitat Lau HT, Al-Jumaily A (2009) Automatically early detection of skin cancer: study based on neural network classification. In: International conference of soft computing and pattern recognition, pp 375–380 Lau HT, Al-Jumaily A (2009) Automatically early detection of skin cancer: study based on neural network classification. In: International conference of soft computing and pattern recognition, pp 375–380
4.
Zurück zum Zitat Jafari MH, Karimi N, Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using deeplearning. In: 23rd international conference on pattern recognition (ICPR). IEEE, pp 337–342 Jafari MH, Karimi N, Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using deeplearning. In: 23rd international conference on pattern recognition (ICPR). IEEE, pp 337–342
5.
Zurück zum Zitat Vijayalakshmi MM (2019) Melano mask in cancer detection using image processing and machine learning. Int J Trend Sci Res Dev 3(6):780–784 Vijayalakshmi MM (2019) Melano mask in cancer detection using image processing and machine learning. Int J Trend Sci Res Dev 3(6):780–784
6.
Zurück zum Zitat Jayalakshmi G, Kumar VS (2019) Performance analysis of Convolutional Neural Network (CNN) based cancerous skin lesion detection system. In: 2019 international conference on computational intelligence in data science (ICCIDS). IEEE, pp 1–6 Jayalakshmi G, Kumar VS (2019) Performance analysis of Convolutional Neural Network (CNN) based cancerous skin lesion detection system. In: 2019 international conference on computational intelligence in data science (ICCIDS). IEEE, pp 1–6
7.
Zurück zum Zitat Sanjana M, Hanuman KV (2018) Skin cancer detection using machine learning. Int J Res Advent Technol 6:3447–3451 Sanjana M, Hanuman KV (2018) Skin cancer detection using machine learning. Int J Res Advent Technol 6:3447–3451
8.
Zurück zum Zitat Jain S, Pise N et al (2015) Computer aided melanoma skin cancer detection using image processing. Procedia Comput Sci 48:735–740CrossRef Jain S, Pise N et al (2015) Computer aided melanoma skin cancer detection using image processing. Procedia Comput Sci 48:735–740CrossRef
9.
Zurück zum Zitat Brinker T, Hekler A, Utikal J, Berking C, Enk A, Kalle C (2018) Skin cancer classification using Convolutional neural networks: systematic review (preprint). J Med Internet Res 20:08CrossRef Brinker T, Hekler A, Utikal J, Berking C, Enk A, Kalle C (2018) Skin cancer classification using Convolutional neural networks: systematic review (preprint). J Med Internet Res 20:08CrossRef
10.
Zurück zum Zitat Waheed Z, Waheed A, Zafar M, Riaz F (2017) An efficient machine learning approach for the detection of melanoma using dermoscopic images. In: 2017 international conference on communication, computing and digital systems (C-CODE). IEEE, pp 316–319 Waheed Z, Waheed A, Zafar M, Riaz F (2017) An efficient machine learning approach for the detection of melanoma using dermoscopic images. In: 2017 international conference on communication, computing and digital systems (C-CODE). IEEE, pp 316–319
11.
Zurück zum Zitat Li Y, Esteva A, Kuprel B, Novoa R, Ko J, Thrun S (2017) Skin cancer detection and tracking using data synthesis and deep learning. In: Workshops at the thirty-first AAAI conference on artificial intelligence Li Y, Esteva A, Kuprel B, Novoa R, Ko J, Thrun S (2017) Skin cancer detection and tracking using data synthesis and deep learning. In: Workshops at the thirty-first AAAI conference on artificial intelligence
12.
Zurück zum Zitat Srividya T, Arulmozhi V (2019) A review of threshold based segmentation for skin cancer with image processing. Int J Recent Technol Eng (IJRTE) 7:2277–3878 Srividya T, Arulmozhi V (2019) A review of threshold based segmentation for skin cancer with image processing. Int J Recent Technol Eng (IJRTE) 7:2277–3878
13.
Zurück zum Zitat Reddy KS, Agarwal K, Tyagi AK (2019) Beyond things: a systematic study of internet of everything. In: International conference on innovations in bio-inspired computing and applications. Springer, Cham, pp 226–242 Reddy KS, Agarwal K, Tyagi AK (2019) Beyond things: a systematic study of internet of everything. In: International conference on innovations in bio-inspired computing and applications. Springer, Cham, pp 226–242
14.
Zurück zum Zitat Tyagi AK (2019) Machine learning with big data. In: Machine learning with big data (March 20, 2019). Proceedings of international conference on sustainable computing in science, technology and management (SUSCOM), Amity University Rajasthan, Jaipur, India Tyagi AK (2019) Machine learning with big data. In: Machine learning with big data (March 20, 2019). Proceedings of international conference on sustainable computing in science, technology and management (SUSCOM), Amity University Rajasthan, Jaipur, India
15.
Zurück zum Zitat Tyagi AK (2020) Prediction models. In: Handbook of research on disease prediction through data analytics and machine learning. IGI Global, pp 50–69 Tyagi AK (2020) Prediction models. In: Handbook of research on disease prediction through data analytics and machine learning. IGI Global, pp 50–69
Metadaten
Titel
Deep Learning Analysis for Skin Cancer Detection
verfasst von
Chandra Singh
Nischitha
Shailesh S. Shetty
Anush Bekal
Sandeep Bhat
Manjunatha Badiger
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4444-6_12