Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.02.2020 | Methodologies and Application | Ausgabe 17/2020

Soft Computing 17/2020

Deep learning-based data imputation on time-variant data using recurrent neural network

Zeitschrift:
Soft Computing > Ausgabe 17/2020
Autoren:
M. Sangeetha, M. Senthil Kumaran
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In general, numerous inbuilt diagnosis complications are due to improper or missing data. Thus, it becomes mandatory to perform proper imputation of the missed values to predict the diseases accurately. Imputation operations will be crucial when we encounter incompletely recorded patient data. The measurement of blood glucose level is considered to be the most important health-conscious effort that one does periodically since the false diagnosis of it leads to misinterpretation of patient health conditions that might cause fatal outcomes. But predicting those measures has become a tedious task in the course of diabetic treatment of these days. This paper focuses on the aim of the imputation of the missing patient-specific diabetic data, especially to overcome the existing methods’ demerits of yielding lesser accuracy and more time. This work attempts to predict the blood glucose levels by analyzing time-series data along with the patient activities. The patient activities are being thoroughly investigated here in this work; for instance, with the first 20-day diabetic data of a patient, the diabetic forecast for the next 10 days is made in the considered month. This prediction of patient diabetic conditions is done by proposing a novel approach for predicting the blood glucose levels with the aid of Maclaurin series-based expectation maximization, estimation of correlation relationship and dissimilarities, kernel-based Hilbert–Schmidt optimization, optimized features, and classification using the deep learning methodology of RNN—recurrent neural network. Finally, we make the performance analysis with the performance metrics like accuracy, Kappa, TN, TP, FN, FP, precision, recall, Jaccard coefficient, F1-measure, and error.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 17/2020

Soft Computing 17/2020 Zur Ausgabe

Premium Partner

    Bildnachweise