Skip to main content
Erschienen in:

18.05.2023 | Technical Paper

Deep learning-based ensemble model for classification of breast cancer

verfasst von: Varsha Nemade, Sunil Pathak, Ashutosh Kumar Dubey

Erschienen in: Microsystem Technologies | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning (DL)-based categorization and detection methods for breast cancer diagnosis through medical images are utilized by computer-aided diagnosis (CAD) techniques. In this study, two DL-based ensemble models were proposed to improve the diagnostic efficiency of the system. The proposed models were evaluated on two mammography datasets: DDSM and CBIS-DDSM. To enhance the performance of breast lesion classification from mammographic scans, three pretrained convolutional neural network (CNN) models, namely VGG16, InceptionV3, and VGG19, were used as base classifiers, and two ensemble models were trained. Ensemble Model 1, using a linear meta-learner in the form of logistic regression for classification, and Ensemble Model 2, using a neural net as the meta-learner for classification. The DDSM dataset achieved accuracy, sensitivity, and specificity of 98.02%, 97.17%, and 98.87%, respectively, for Ensemble Model 1, and 98.10%, 97.01%, and 99.12%, respectively, for Ensemble Model 2. Furthermore, the performance of the proposed models was compared with existing state-of-the-art systems, and the results showed an increase in breast cancer classification performance with the proposed models. Hence, the proposed models have the potential to aid medical professionals in accurately classifying breast lesions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdullah N, Baharudin N, Mohamad M, Mohamed-Yassin MS (2022) Factors associated with screening mammogram uptake among women attending an urban university primary care clinic in Malaysia. Int J Environ Res Public Health 19(10):6103 Abdullah N, Baharudin N, Mohamad M, Mohamed-Yassin MS (2022) Factors associated with screening mammogram uptake among women attending an urban university primary care clinic in Malaysia. Int J Environ Res Public Health 19(10):6103
Zurück zum Zitat Adedigba AP, Adeshina SA, Aibinu AM (2022) Performance evaluation of deep learning models on mammogram classification using small dataset. Bioengineering 9(4):161 Adedigba AP, Adeshina SA, Aibinu AM (2022) Performance evaluation of deep learning models on mammogram classification using small dataset. Bioengineering 9(4):161
Zurück zum Zitat Ahmad A, Ullah A, Feng C, Khan M, Ashraf S, Adnan M, Nazir S, Khan HU (2020) Towards an improved energy efficient and end-to-end secure protocol for iot healthcare applications. Security Commun Netw 22(2020):1 Ahmad A, Ullah A, Feng C, Khan M, Ashraf S, Adnan M, Nazir S, Khan HU (2020) Towards an improved energy efficient and end-to-end secure protocol for iot healthcare applications. Security Commun Netw 22(2020):1
Zurück zum Zitat Al-Antari MA, Al-Masni MA, Park SU, Park J, Metwally MK, Kadah YM, Han SM, Kim TS (2018a) An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J Med Biol Eng 38(3):443–456 Al-Antari MA, Al-Masni MA, Park SU, Park J, Metwally MK, Kadah YM, Han SM, Kim TS (2018a) An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J Med Biol Eng 38(3):443–456
Zurück zum Zitat Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS (2018b) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 117:44–54 Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS (2018b) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 117:44–54
Zurück zum Zitat Al-Antari MA, Han SM, Kim TS (2020) Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput Methods Programs Biomed 196:105584 Al-Antari MA, Han SM, Kim TS (2020) Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput Methods Programs Biomed 196:105584
Zurück zum Zitat Alfifi M, Alrahhal MS, Bataineh S, Mezher M (2020) Enhanced artificial intelligence system for diagnosing and predicting breast cancer using deep learning. Int J Adv Comput Sci Appl 11(7):498–512 Alfifi M, Alrahhal MS, Bataineh S, Mezher M (2020) Enhanced artificial intelligence system for diagnosing and predicting breast cancer using deep learning. Int J Adv Comput Sci Appl 11(7):498–512
Zurück zum Zitat Al-Najdawi N, Biltawi M, Tedmori S (2015) Mammogram image visual enhancement, mass segmentation and classification. Appl Soft Comput 35:175–185 Al-Najdawi N, Biltawi M, Tedmori S (2015) Mammogram image visual enhancement, mass segmentation and classification. Appl Soft Comput 35:175–185
Zurück zum Zitat Alruwaili M, Gouda W (2022) Automated breast cancer detection models based on transfer learning. Sensors 22(3):876 Alruwaili M, Gouda W (2022) Automated breast cancer detection models based on transfer learning. Sensors 22(3):876
Zurück zum Zitat Altameem A, Mahanty C, Poonia RC, Saudagar AK, Kumar R (2022) Breast cancer detection in mammography images using deep convolutional neural networks and fuzzy ensemble modeling techniques. Diagnostics 12(8):1812 Altameem A, Mahanty C, Poonia RC, Saudagar AK, Kumar R (2022) Breast cancer detection in mammography images using deep convolutional neural networks and fuzzy ensemble modeling techniques. Diagnostics 12(8):1812
Zurück zum Zitat Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44(10):5162–5171 Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44(10):5162–5171
Zurück zum Zitat Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MA (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Programs Biomed 127:248–257 Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MA (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Programs Biomed 127:248–257
Zurück zum Zitat Ashraf S, Ahmed T, Saleem S (2021) NRSM: Node redeployment shrewd mechanism for wireless sensor network. Iran J Comput Sci 4(3):171–183 Ashraf S, Ahmed T, Saleem S (2021) NRSM: Node redeployment shrewd mechanism for wireless sensor network. Iran J Comput Sci 4(3):171–183
Zurück zum Zitat Baccouche A, Garcia-Zapirain B, Elmaghraby AS (2022) An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks. Sci Rep 12(1):1–7 Baccouche A, Garcia-Zapirain B, Elmaghraby AS (2022) An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks. Sci Rep 12(1):1–7
Zurück zum Zitat Chakravarthy SS, Rajaguru H (2022) Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. IRBM 43(1):49–61 Chakravarthy SS, Rajaguru H (2022) Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. IRBM 43(1):49–61
Zurück zum Zitat Chan H, Chang CC, Chen P, Lee JT (2019) Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan. CATENA 176:419–429 Chan H, Chang CC, Chen P, Lee JT (2019) Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan. CATENA 176:419–429
Zurück zum Zitat Das A, Mohanty MN, Mallick PK, Tiwari P, Muhammad K, Zhu H (2021) Breast cancer detection using an ensemble deep learning method. Biomed Signal Process Control 70:103009 Das A, Mohanty MN, Mallick PK, Tiwari P, Muhammad K, Zhu H (2021) Breast cancer detection using an ensemble deep learning method. Biomed Signal Process Control 70:103009
Zurück zum Zitat Dhungel N, Carneiro G, Bradley AP (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128 Dhungel N, Carneiro G, Bradley AP (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128
Zurück zum Zitat Dietterich TG (2000) Ensemble methods in machine learning. In: International workshop on multiple classifier systems, pp. 1–15. Springer, Berlin Dietterich TG (2000) Ensemble methods in machine learning. In: International workshop on multiple classifier systems, pp. 1–15. Springer, Berlin
Zurück zum Zitat Dubey A, Gupta U, Jain S (2021) Medical data clustering and classification using TLBO and machine learning algorithms. Comput Mater Continua 70(3):4523–4543 Dubey A, Gupta U, Jain S (2021) Medical data clustering and classification using TLBO and machine learning algorithms. Comput Mater Continua 70(3):4523–4543
Zurück zum Zitat Fadzil AF, Abd Khalid NE, Ibrahim S (2021) Amplification of pixels in medical image data for segmentation via deep learning object-oriented approach. Int J Adv Technol Eng Explor 8(74):82 Fadzil AF, Abd Khalid NE, Ibrahim S (2021) Amplification of pixels in medical image data for segmentation via deep learning object-oriented approach. Int J Adv Technol Eng Explor 8(74):82
Zurück zum Zitat Falconi LG, Perez M, Aguilar WG, Conci A (2020) Transfer learning and fine tuning in breast mammogram abnormalities classification on CBIS-DDSM database. Adv Sci Technol Eng Syst J 5:154–165 Falconi LG, Perez M, Aguilar WG, Conci A (2020) Transfer learning and fine tuning in breast mammogram abnormalities classification on CBIS-DDSM database. Adv Sci Technol Eng Syst J 5:154–165
Zurück zum Zitat Fulton L, McLeod A, Dolezel D, Bastian N, Fulton CP (2021) Deep vision for breast cancer classification and segmentation. Cancers 13(21):5384 Fulton L, McLeod A, Dolezel D, Bastian N, Fulton CP (2021) Deep vision for breast cancer classification and segmentation. Cancers 13(21):5384
Zurück zum Zitat Gnanasekaran VS, Joypaul S, Sundaram PM, Chairman DD (2020) Deep learning algorithm for breast masses classification in mammograms. IET Image Proc 14(12):2860–2868 Gnanasekaran VS, Joypaul S, Sundaram PM, Chairman DD (2020) Deep learning algorithm for breast masses classification in mammograms. IET Image Proc 14(12):2860–2868
Zurück zum Zitat Goldhirsch A, Coates AS, Gelber RD, Glick JH, Thürlimann B, Senn HJ, behalf of the St Gallen O, Members EP. First—select the target: better choice of adjuvant treatments for breast cancer patients. Ann Oncol. 2006;17(12):1772–1776 Goldhirsch A, Coates AS, Gelber RD, Glick JH, Thürlimann B, Senn HJ, behalf of the St Gallen O, Members EP. First—select the target: better choice of adjuvant treatments for breast cancer patients. Ann Oncol. 2006;17(12):1772–1776
Zurück zum Zitat Guo Q, Wang X, Gao Y, Zhou J, Huang C, Zhang Z, Chu H (2021) Relationship between particulate matter exposure and female breast cancer incidence and mortality: a systematic review and meta-analysis. Int Arch Occup Environ Health 94(2):191–201 Guo Q, Wang X, Gao Y, Zhou J, Huang C, Zhang Z, Chu H (2021) Relationship between particulate matter exposure and female breast cancer incidence and mortality: a systematic review and meta-analysis. Int Arch Occup Environ Health 94(2):191–201
Zurück zum Zitat Humayun M, Khalil MI, Almuayqil SN, Jhanjhi NZ (2023) Framework for detecting breast cancer risk presence using deep learning. Electronics 12(2):403 Humayun M, Khalil MI, Almuayqil SN, Jhanjhi NZ (2023) Framework for detecting breast cancer risk presence using deep learning. Electronics 12(2):403
Zurück zum Zitat Huynh BQ, Li H, Giger ML (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):034501 Huynh BQ, Li H, Giger ML (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):034501
Zurück zum Zitat Jabeen K, Khan MA, Balili J, Alhaisoni M, Almujally NA, Alrashidi H, Tariq U, Cha JH (2023) BC2NetRF: breast cancer classification from mammogram images using enhanced deep learning features and equilibrium-Jaya controlled regula falsi-based features selection. Diagnostics 13(7):1238 Jabeen K, Khan MA, Balili J, Alhaisoni M, Almujally NA, Alrashidi H, Tariq U, Cha JH (2023) BC2NetRF: breast cancer classification from mammogram images using enhanced deep learning features and equilibrium-Jaya controlled regula falsi-based features selection. Diagnostics 13(7):1238
Zurück zum Zitat Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A (2017) Three-class mammogram classification based on descriptive CNN features. BioMed Res Int 2017:1 Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A (2017) Three-class mammogram classification based on descriptive CNN features. BioMed Res Int 2017:1
Zurück zum Zitat Jasti V, Zamani AS, Arumugam K, Naved M, Pallathadka H, Sammy F, Raghuvanshi A, Kaliyaperumal K (2022) Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Security Commun Netw 2022:1 Jasti V, Zamani AS, Arumugam K, Naved M, Pallathadka H, Sammy F, Raghuvanshi A, Kaliyaperumal K (2022) Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Security Commun Netw 2022:1
Zurück zum Zitat Kumar P, Srivastava S, Mishra RK, Sai YP (2022) End-to-end improved convolutional neural network model for breast cancer detection using mammographic data. J Defense Model Simul 12:1548512920973268 Kumar P, Srivastava S, Mishra RK, Sai YP (2022) End-to-end improved convolutional neural network model for breast cancer detection using mammographic data. J Defense Model Simul 12:1548512920973268
Zurück zum Zitat Kumari LK, Jagadesh BN (2022) Classification of mammograms using adaptive binary TLBO with ensemble classifier for early detection of breast cancer. Int J Inf Technol 17:1–2 Kumari LK, Jagadesh BN (2022) Classification of mammograms using adaptive binary TLBO with ensemble classifier for early detection of breast cancer. Int J Inf Technol 17:1–2
Zurück zum Zitat Laishram R, Rabidas R (2021) WDO optimized detection for mammographic masses and its diagnosis: a unified CAD system. Appl Soft Comput 110:107620 Laishram R, Rabidas R (2021) WDO optimized detection for mammographic masses and its diagnosis: a unified CAD system. Appl Soft Comput 110:107620
Zurück zum Zitat Li J, Zhou Z, Dong J, Fu Y, Li Y, Luan Z, Peng X (2021) Predicting breast cancer 5-year survival using machine learning: a systematic review. PLoS ONE 16(4):e0250370 Li J, Zhou Z, Dong J, Fu Y, Li Y, Luan Z, Peng X (2021) Predicting breast cancer 5-year survival using machine learning: a systematic review. PLoS ONE 16(4):e0250370
Zurück zum Zitat Lomboy KE, Hernandez RM (2021) A comparative performance of breast cancer classification using hyper-parameterized machine learning models. Int J Adv Technol Eng Explor 8(82):1080 Lomboy KE, Hernandez RM (2021) A comparative performance of breast cancer classification using hyper-parameterized machine learning models. Int J Adv Technol Eng Explor 8(82):1080
Zurück zum Zitat Malebary SJ, Hashmi A (2021) Automated breast mass classification system using deep learning and ensemble learning in digital mammogram. IEEE Access 9:55312–55328 Malebary SJ, Hashmi A (2021) Automated breast mass classification system using deep learning and ensemble learning in digital mammogram. IEEE Access 9:55312–55328
Zurück zum Zitat Melekoodappattu JG, Dhas AS, Kandathil BK, Adarsh KS (2022) Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. J Ambient Intell Humaniz Comput 24:1 Melekoodappattu JG, Dhas AS, Kandathil BK, Adarsh KS (2022) Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. J Ambient Intell Humaniz Comput 24:1
Zurück zum Zitat Mobark N, Hamad S, Rida SZ (2022) CoroNet: deep neural network-based end-to-end training for breast cancer diagnosis. Appl Sci 12(14):7080 Mobark N, Hamad S, Rida SZ (2022) CoroNet: deep neural network-based end-to-end training for breast cancer diagnosis. Appl Sci 12(14):7080
Zurück zum Zitat Mohiyuddin A, Basharat A, Ghani U, Abbas S, Naeem OB, Rizwan M (2022) Breast tumor detection and classification in mammogram images using modified YOLOv5 network. Comput Math Methods Med 2022:1 Mohiyuddin A, Basharat A, Ghani U, Abbas S, Naeem OB, Rizwan M (2022) Breast tumor detection and classification in mammogram images using modified YOLOv5 network. Comput Math Methods Med 2022:1
Zurück zum Zitat Moon WK, Lee YW, Ke HH, Lee SH, Huang CS, Chang RF (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Programs Biomed 190:105361 Moon WK, Lee YW, Ke HH, Lee SH, Huang CS, Chang RF (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Programs Biomed 190:105361
Zurück zum Zitat Nagalakshmi T (2022) Breast cancer semantic segmentation for accurate breast cancer detection with an ensemble deep neural network. Neural Proces Lett 54:1–4 Nagalakshmi T (2022) Breast cancer semantic segmentation for accurate breast cancer detection with an ensemble deep neural network. Neural Proces Lett 54:1–4
Zurück zum Zitat Nemade V, Pathak S, Dubey AK (2022) A systematic literature review of breast cancer diagnosis using machine intelligence techniques. Archiv Comput Methods Eng 29:1–30 Nemade V, Pathak S, Dubey AK (2022) A systematic literature review of breast cancer diagnosis using machine intelligence techniques. Archiv Comput Methods Eng 29:1–30
Zurück zum Zitat Obayya M, Maashi MS, Nemri N, Mohsen H, Motwakel A, Osman AE, Alneil AA, Alsaid MI (2023) Hyperparameter optimizer with deep learning-based decision-support systems for histopathological breast cancer diagnosis. Cancers 15(3):885 Obayya M, Maashi MS, Nemri N, Mohsen H, Motwakel A, Osman AE, Alneil AA, Alsaid MI (2023) Hyperparameter optimizer with deep learning-based decision-support systems for histopathological breast cancer diagnosis. Cancers 15(3):885
Zurück zum Zitat Oyelade ON, Ezugwu AE (2021) A deep learning model using data augmentation for detection of architectural distortion in whole and patches of images. Biomed Signal Process Control 65:102366 Oyelade ON, Ezugwu AE (2021) A deep learning model using data augmentation for detection of architectural distortion in whole and patches of images. Biomed Signal Process Control 65:102366
Zurück zum Zitat Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In International workshop on digital mammography, pp. 88-94. Springer, Cham Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In International workshop on digital mammography, pp. 88-94. Springer, Cham
Zurück zum Zitat Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2018) Detecting and classifying lesions in mammograms with deep learning. Sci Rep 8(1):1–7 Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2018) Detecting and classifying lesions in mammograms with deep learning. Sci Rep 8(1):1–7
Zurück zum Zitat Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H (2021) A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 9:71194–71209 Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H (2021) A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 9:71194–71209
Zurück zum Zitat Salama WM, Aly MH (2021) Deep learning in mammography images segmentation and classification: automated CNN approach. Alex Eng J 60(5):4701–4709 Salama WM, Aly MH (2021) Deep learning in mammography images segmentation and classification: automated CNN approach. Alex Eng J 60(5):4701–4709
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA: Cancer J Clini 65(1):5–29 Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA: Cancer J Clini 65(1):5–29
Zurück zum Zitat Song R, Li T, Wang Y (2020) Mammographic classification based on XGBoost and DCNN with multi features. IEEE Access 8:75011–75021 Song R, Li T, Wang Y (2020) Mammographic classification based on XGBoost and DCNN with multi features. IEEE Access 8:75011–75021
Zurück zum Zitat Suzuki S, Zhang X, Homma N, Ichiji K, Sugita N, Kawasumi Y, Ishibashi T, Yoshizawa M (2016) Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis. In: Annual conference of the society of instrument and control engineers of Japan, pp. 1382–1386. IEEE Suzuki S, Zhang X, Homma N, Ichiji K, Sugita N, Kawasumi Y, Ishibashi T, Yoshizawa M (2016) Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis. In: Annual conference of the society of instrument and control engineers of Japan, pp. 1382–1386. IEEE
Zurück zum Zitat Tiryaki VM (2023) Deep transfer learning to classify mass and calcification pathologies from screen film mammograms. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 12(1):57–65 Tiryaki VM (2023) Deep transfer learning to classify mass and calcification pathologies from screen film mammograms. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 12(1):57–65
Zurück zum Zitat Wang H, Feng J, Zhang Z, Su H, Cui L, He H, Liu L (2018) Breast mass classification via deeply integrating the contextual information from multi-view data. Pattern Recogn 80:42–52 Wang H, Feng J, Zhang Z, Su H, Cui L, He H, Liu L (2018) Breast mass classification via deeply integrating the contextual information from multi-view data. Pattern Recogn 80:42–52
Metadaten
Titel
Deep learning-based ensemble model for classification of breast cancer
verfasst von
Varsha Nemade
Sunil Pathak
Ashutosh Kumar Dubey
Publikationsdatum
18.05.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-023-05469-y