Skip to main content
Erschienen in:

04.06.2024 | Original Paper

Deep learning-based fuzzy decision support system-based fault diagnosis of wind turbine generators in electrical machines

verfasst von: Wei Pang, Kangming Xu, Qingyuan Wu, Chenyue Wang, Jingyue Li, Nan Yin

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Precise monitoring and diagnosis outwit the faults in generator rotors, preventing malfunction and resurrections. This article, therefore, introduces a hybrid decision support system for wind turbine fault diagnosis. The hybrid system assimilates deep learning functions and fuzzy optimization linearly to prevent faults. First, the deep learning paradigm inputs the rotor speed and vibration for the recurrent identification of abnormal frequency harmonics. The identified frequency harmonics are verified with the output power in the conventional operation routine to compute the fault intensity. This harmonic change varies the training intensity to prevent major faults. Secondly, fuzzy optimization inputs the difference in energy generated between different scenarios and identifies the optimal (maximum) performance outcome. Such identification improves turbine operation and maintenance decisions, mitigating the rotor faults. The decision intervals are variable, abiding by the optimization of learning routines required for smooth rotor operations of the turbine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sheng X, Wan S, Han X, He Y, Wang X (2022) Impact of actual wind speed distribution on the fault characteristic of DFIG rotor winding asymmetry. IEEE Trans Instrum Meas 71:1–14MATH Sheng X, Wan S, Han X, He Y, Wang X (2022) Impact of actual wind speed distribution on the fault characteristic of DFIG rotor winding asymmetry. IEEE Trans Instrum Meas 71:1–14MATH
2.
Zurück zum Zitat Freeman B, Tang Y, Huang Y, VanZwieten J (2022) Physics-informed turbulence intensity infusion: a new hybrid approach for marine current turbine rotor blade fault detection. Ocean Eng 254:111299CrossRefMATH Freeman B, Tang Y, Huang Y, VanZwieten J (2022) Physics-informed turbulence intensity infusion: a new hybrid approach for marine current turbine rotor blade fault detection. Ocean Eng 254:111299CrossRefMATH
3.
Zurück zum Zitat Fang J, Hu W, Liu Z, Chen W, Tan J, Jiang Z, Verma AS (2022) Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning. Renew Sustain Energy Rev 168:112788CrossRef Fang J, Hu W, Liu Z, Chen W, Tan J, Jiang Z, Verma AS (2022) Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning. Renew Sustain Energy Rev 168:112788CrossRef
4.
Zurück zum Zitat Dameshghi A, Refan MH (2021) Combination of condition monitoring and prognosis systems based on current measurement and PSO-LS-SVM method for wind turbine DFIGs with rotor electrical asymmetry. Energy Syst 12:203–232CrossRef Dameshghi A, Refan MH (2021) Combination of condition monitoring and prognosis systems based on current measurement and PSO-LS-SVM method for wind turbine DFIGs with rotor electrical asymmetry. Energy Syst 12:203–232CrossRef
5.
Zurück zum Zitat Glowacz A (2023) Thermographic fault diagnosis of electrical faults of commutator and induction motors. Eng Appl Artif Intell 121:105962CrossRefMATH Glowacz A (2023) Thermographic fault diagnosis of electrical faults of commutator and induction motors. Eng Appl Artif Intell 121:105962CrossRefMATH
6.
Zurück zum Zitat Touti W, Salah M, Bacha K, Chaari A (2022) Condition monitoring of a wind turbine drivetrain based on generator stator current processing. ISA Trans 128:650–664CrossRef Touti W, Salah M, Bacha K, Chaari A (2022) Condition monitoring of a wind turbine drivetrain based on generator stator current processing. ISA Trans 128:650–664CrossRef
7.
Zurück zum Zitat Guo Z, Pu Z, Du W, Wang H, Li C (2022) Improved adversarial learning for fault feature generation of wind turbine gearbox. Renew Energy 185:255–266CrossRefMATH Guo Z, Pu Z, Du W, Wang H, Li C (2022) Improved adversarial learning for fault feature generation of wind turbine gearbox. Renew Energy 185:255–266CrossRefMATH
8.
Zurück zum Zitat Dong W, Zhang S, Hu M, Zhang L, Liu H (2022) Intelligent fault diagnosis of wind turbine gearboxes based on refined generalized multi-scale state joint entropy and robust spectral feature selection. Nonlinear Dyn 107(3):2485–2517CrossRefMATH Dong W, Zhang S, Hu M, Zhang L, Liu H (2022) Intelligent fault diagnosis of wind turbine gearboxes based on refined generalized multi-scale state joint entropy and robust spectral feature selection. Nonlinear Dyn 107(3):2485–2517CrossRefMATH
9.
Zurück zum Zitat Xu S, Tao S, Zheng W, Chai Y, Ma M, Ding L (2021) Multiple open-circuit fault diagnosis for back-to-back converter of PMSG wind generation system based on instantaneous amplitude estimation. IEEE Trans Instrum Meas 70:1–13 Xu S, Tao S, Zheng W, Chai Y, Ma M, Ding L (2021) Multiple open-circuit fault diagnosis for back-to-back converter of PMSG wind generation system based on instantaneous amplitude estimation. IEEE Trans Instrum Meas 70:1–13
10.
Zurück zum Zitat Ding X, Gong Y, Wang C, Zheng Z (2024) Artificial intelligence based abnormal detection system and method for wind power equipment. Int J Thermofluids 21:100569CrossRefMATH Ding X, Gong Y, Wang C, Zheng Z (2024) Artificial intelligence based abnormal detection system and method for wind power equipment. Int J Thermofluids 21:100569CrossRefMATH
11.
Zurück zum Zitat Ding X, Zhang Y, Ye Z (2021) Current sensors offset fault online estimation in permanent magnet synchronous generator (PMSG) drives for offshore wind turbines. IEEE Access 9:135996–136003CrossRef Ding X, Zhang Y, Ye Z (2021) Current sensors offset fault online estimation in permanent magnet synchronous generator (PMSG) drives for offshore wind turbines. IEEE Access 9:135996–136003CrossRef
12.
Zurück zum Zitat Touti W, Salah M, Sheng S, Bacha K (2024) An envelope time synchronous averaging for wind turbine gearbox fault diagnosis. J Vib Eng Tech 12:6513–6525 Touti W, Salah M, Sheng S, Bacha K (2024) An envelope time synchronous averaging for wind turbine gearbox fault diagnosis. J Vib Eng Tech 12:6513–6525
13.
Zurück zum Zitat Cho S, Choi M, Gao Z, Moan T (2021) Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks. Renew Energy 169:1–13CrossRefMATH Cho S, Choi M, Gao Z, Moan T (2021) Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks. Renew Energy 169:1–13CrossRefMATH
14.
Zurück zum Zitat Wen X, Xu Z (2021) Wind turbine fault diagnosis based on ReliefF-PCA and DNN. Expert Syst Appl 178:115016CrossRefMATH Wen X, Xu Z (2021) Wind turbine fault diagnosis based on ReliefF-PCA and DNN. Expert Syst Appl 178:115016CrossRefMATH
15.
Zurück zum Zitat Tian M, Su X, Chen C, Luo Y, Sun X (2023) Bearing fault diagnosis of wind turbines based on dynamic multi-adversarial adaptive network. J Mech Sci Tech 37:1637–1651CrossRefMATH Tian M, Su X, Chen C, Luo Y, Sun X (2023) Bearing fault diagnosis of wind turbines based on dynamic multi-adversarial adaptive network. J Mech Sci Tech 37:1637–1651CrossRefMATH
16.
Zurück zum Zitat Vives J (2022) Vibration analysis for fault detection in wind turbines using machine learning techniques. Adv Comput Intell 2(1):15CrossRefMATH Vives J (2022) Vibration analysis for fault detection in wind turbines using machine learning techniques. Adv Comput Intell 2(1):15CrossRefMATH
17.
Zurück zum Zitat Lin KC, Hsu JY, Wang HW, Chen MY (2024) Early fault prediction for wind turbines based on deep learning. Sustain Energy Technol Assess 64:103684 Lin KC, Hsu JY, Wang HW, Chen MY (2024) Early fault prediction for wind turbines based on deep learning. Sustain Energy Technol Assess 64:103684
18.
Zurück zum Zitat Al-Hiealy MRJ, Shikh MSBAM, Jalil AB, Rahman SA, Jarrah M (2021) Management switching angles real-time prediction by artificial neural network. Indones J Electr Eng Comput Sci 23(1):110–119 Al-Hiealy MRJ, Shikh MSBAM, Jalil AB, Rahman SA, Jarrah M (2021) Management switching angles real-time prediction by artificial neural network. Indones J Electr Eng Comput Sci 23(1):110–119
19.
Zurück zum Zitat Rouabah B, Toubakh H, Kafi MR, Sayed-Mouchaweh M (2022) Adaptive data-driven fault-tolerant control strategy for optimal power extraction in presence of broken rotor bars in wind turbine. ISA Trans 130:92–103CrossRef Rouabah B, Toubakh H, Kafi MR, Sayed-Mouchaweh M (2022) Adaptive data-driven fault-tolerant control strategy for optimal power extraction in presence of broken rotor bars in wind turbine. ISA Trans 130:92–103CrossRef
20.
Zurück zum Zitat Xing Z, Chen M, Cui J, Chen Z, Xu J (2022) Detection of magnitude and position of rotor aerodynamic imbalance of wind turbines using convolutional neural network. Renew Energy 197:1020–1033CrossRefMATH Xing Z, Chen M, Cui J, Chen Z, Xu J (2022) Detection of magnitude and position of rotor aerodynamic imbalance of wind turbines using convolutional neural network. Renew Energy 197:1020–1033CrossRefMATH
21.
Zurück zum Zitat Hübner GR, Pinheiro H, de Souza CE, Franchi CM, da Rosa LD, Dias JP (2021) Detection of mass imbalance in the rotor of wind turbines using support vector machine. Renew Energy 170:49–59CrossRef Hübner GR, Pinheiro H, de Souza CE, Franchi CM, da Rosa LD, Dias JP (2021) Detection of mass imbalance in the rotor of wind turbines using support vector machine. Renew Energy 170:49–59CrossRef
22.
Zurück zum Zitat Yin L, Chen L, Liu D, Huang X, Gao F (2021) Quantum deep reinforcement learning for rotor side converter control of double-fed induction generator-based wind turbines. Eng Appl Artif Intell 106:104451CrossRef Yin L, Chen L, Liu D, Huang X, Gao F (2021) Quantum deep reinforcement learning for rotor side converter control of double-fed induction generator-based wind turbines. Eng Appl Artif Intell 106:104451CrossRef
23.
Zurück zum Zitat Tan Y, Zhang H, Zhou Y (2019) Fault detection method for permanent magnet synchronous generator wind energy converters using correlation features among three-phase currents. J Mod Power Syst Clean Energy 8(1):168–178CrossRefMATH Tan Y, Zhang H, Zhou Y (2019) Fault detection method for permanent magnet synchronous generator wind energy converters using correlation features among three-phase currents. J Mod Power Syst Clean Energy 8(1):168–178CrossRefMATH
24.
Zurück zum Zitat Yang Q, Liu G, Bao Y, Chen Q (2021) Fault detection of wind turbine generator bearing using attention-based neural networks and voting-based strategy. IEEE/ASME Trans Mechatron 27(5):3008–3018CrossRefMATH Yang Q, Liu G, Bao Y, Chen Q (2021) Fault detection of wind turbine generator bearing using attention-based neural networks and voting-based strategy. IEEE/ASME Trans Mechatron 27(5):3008–3018CrossRefMATH
25.
Zurück zum Zitat Zhang L, Zhang H, Cai G (2022) The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model. IEEE Trans Instrum Meas 71:1–12MATH Zhang L, Zhang H, Cai G (2022) The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model. IEEE Trans Instrum Meas 71:1–12MATH
26.
Zurück zum Zitat Chen J, Yao W, Lu Q, Ren Y, Duan W, Kan J, Jiang L (2022) Adaptive active fault-tolerant MPPT control of variable-speed wind turbine considering generator actuator failure. Int J Electr Power Energy Syst 143:108443CrossRef Chen J, Yao W, Lu Q, Ren Y, Duan W, Kan J, Jiang L (2022) Adaptive active fault-tolerant MPPT control of variable-speed wind turbine considering generator actuator failure. Int J Electr Power Energy Syst 143:108443CrossRef
27.
Zurück zum Zitat Su Y, Meng L, Kong X, Xu T, Lan X, Li Y (2022) Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks. Eng Fail Anal 140:106573CrossRef Su Y, Meng L, Kong X, Xu T, Lan X, Li Y (2022) Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks. Eng Fail Anal 140:106573CrossRef
28.
Zurück zum Zitat Mostafa MA, El-Hay EA, Elkholy MM (2023) Optimal low voltage ride through of wind turbine doubly fed induction generator based on bonobo optimization algorithm. Sci Rep 13(1):7778CrossRefMATH Mostafa MA, El-Hay EA, Elkholy MM (2023) Optimal low voltage ride through of wind turbine doubly fed induction generator based on bonobo optimization algorithm. Sci Rep 13(1):7778CrossRefMATH
29.
Zurück zum Zitat Jiang G, Fan W, Li W, Wang L, He Q, Xie P, Li X (2022) DeepFedWT: a federated deep learning framework for fault detection of wind turbines. Measurement 199:111529CrossRefMATH Jiang G, Fan W, Li W, Wang L, He Q, Xie P, Li X (2022) DeepFedWT: a federated deep learning framework for fault detection of wind turbines. Measurement 199:111529CrossRefMATH
31.
Zurück zum Zitat Kandukuri ST, Senanyaka JSL, Robbersmyr KG (2019) A two-stage fault detection and classification scheme for electrical pitch drives in offshore wind farms using support vector machine. IEEE Trans Ind Appl 55(5):5109–5118CrossRef Kandukuri ST, Senanyaka JSL, Robbersmyr KG (2019) A two-stage fault detection and classification scheme for electrical pitch drives in offshore wind farms using support vector machine. IEEE Trans Ind Appl 55(5):5109–5118CrossRef
Metadaten
Titel
Deep learning-based fuzzy decision support system-based fault diagnosis of wind turbine generators in electrical machines
verfasst von
Wei Pang
Kangming Xu
Qingyuan Wu
Chenyue Wang
Jingyue Li
Nan Yin
Publikationsdatum
04.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02426-4