Skip to main content
Erschienen in:

14.08.2023

Deep-learning-based neural network for design of a dual-band coupled-line trans-directional coupler

verfasst von: Tarek Sallam, Eman M. Eldesouki, Ahmed M. Attiya

Erschienen in: Journal of Computational Electronics | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A deep-learning-based model to automate the design of a dual-band coupled-line trans-directional (CL-TRD) coupler can greatly improve upon the current techniques that rely on complicated analysis. In this paper, we propose a convolutional neural network (CNN), which is a type of deep learning, which can rapidly output the parameters of dual-band directional couplers corresponding to theoretical (ideal) specifications of the electrical parameters through an inverse model. The neural network training data are generated using the HFSS electromagnetic simulation tool by varying the geometrical design parameters of the coupler. To validate the robustness of the CNN inverse model, it is applied on a 3-dB dual-band CL-TRD coupler operating at 1.2/4 GHz, and compared with a shallow neural network, namely, a radial basis function neural network (RBFNN). The coupler parameters designed by both neural networks are verified by HFSS. The results reveal that the CNN-simulated S-parameters and output port phase difference are in good agreement with the ideal values compared with those of the RBFNN, with greater accuracy and speed. The designed coupler was fabricated and measured for verification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Hoboken, NJ (2012) Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Hoboken, NJ (2012)
2.
Zurück zum Zitat Liu, H., Fang, S., Wang, Z., Fu, S.: Analysis and implementation of a dual-band coupled-line trans-directional coupler. IEEE Trans Circuits Syst. II Exp. Briefs 67(3), 485–490 (2020) Liu, H., Fang, S., Wang, Z., Fu, S.: Analysis and implementation of a dual-band coupled-line trans-directional coupler. IEEE Trans Circuits Syst. II Exp. Briefs 67(3), 485–490 (2020)
3.
Zurück zum Zitat Kabir, H., Wang, Y., Yu, M., Zhang, Q.-J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Techn. 56(4), 867–879 (2008)CrossRef Kabir, H., Wang, Y., Yu, M., Zhang, Q.-J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Techn. 56(4), 867–879 (2008)CrossRef
4.
Zurück zum Zitat Zhang, C., Jin, J., Na, W., Zhang, Q.-J., Yu, M.: Multivalued neural network inverse modeling and applications to microwave filters. IEEE Trans. Microw. Theory Techn. 66(8), 3781–3797 (2018)CrossRef Zhang, C., Jin, J., Na, W., Zhang, Q.-J., Yu, M.: Multivalued neural network inverse modeling and applications to microwave filters. IEEE Trans. Microw. Theory Techn. 66(8), 3781–3797 (2018)CrossRef
5.
Zurück zum Zitat Selleri, S., Manetti, S., Pelosi, G.: Neural network applications in microwave device design. Int. J. RF Microw. Comput. Aided Eng. 12, 90–97 (2002)CrossRef Selleri, S., Manetti, S., Pelosi, G.: Neural network applications in microwave device design. Int. J. RF Microw. Comput. Aided Eng. 12, 90–97 (2002)CrossRef
6.
Zurück zum Zitat Sallam, T., Attiya, A.: Neural network inverse model for multi-band unequal Wilkinson power divider. COMPEL-Int. J. Comput. Math. Electr. Electr. Eng. 41(5), 1604–1617 (2022)CrossRef Sallam, T., Attiya, A.: Neural network inverse model for multi-band unequal Wilkinson power divider. COMPEL-Int. J. Comput. Math. Electr. Electr. Eng. 41(5), 1604–1617 (2022)CrossRef
7.
Zurück zum Zitat Liu, A., Leng, M., Pan, G., Yu, M.: Automatic coupler design based on artificial neural network with self-adaptive local surrogates. IEEE Trans. Microw. Theory Tech. 70(11), 4711–4725 (2022)CrossRef Liu, A., Leng, M., Pan, G., Yu, M.: Automatic coupler design based on artificial neural network with self-adaptive local surrogates. IEEE Trans. Microw. Theory Tech. 70(11), 4711–4725 (2022)CrossRef
8.
Zurück zum Zitat Liu, A., Leng, M., Pan, G., Yu, M.: Automatic coupler design using data-driven-based modular neural network. IEEE Microw. Wireless Compon. Lett. 31(12), 1259–1262 (2021)CrossRef Liu, A., Leng, M., Pan, G., Yu, M.: Automatic coupler design using data-driven-based modular neural network. IEEE Microw. Wireless Compon. Lett. 31(12), 1259–1262 (2021)CrossRef
9.
Zurück zum Zitat Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016)MATH Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016)MATH
10.
Zurück zum Zitat Gao, Y., Wang, X., Yu, N., Wong, B.M.: Harnessing deep reinforcement learning to construct time-dependent optimal fields for quantum control dynamics. Phys. Chem. Chem. Phys. 24(39), 24012–24020 (2022)CrossRef Gao, Y., Wang, X., Yu, N., Wong, B.M.: Harnessing deep reinforcement learning to construct time-dependent optimal fields for quantum control dynamics. Phys. Chem. Chem. Phys. 24(39), 24012–24020 (2022)CrossRef
11.
Zurück zum Zitat Wang, X., Kumar, A., Shelton, C.R., Wong, B.M.: Harnessing deep neural networks to solve inverse problems in quantum dynamics: Machine-learned predictions of time-dependent optimal control fields. Phys. Chem. Chem. Phys. 22(40), 22889–22899 (2020)CrossRef Wang, X., Kumar, A., Shelton, C.R., Wong, B.M.: Harnessing deep neural networks to solve inverse problems in quantum dynamics: Machine-learned predictions of time-dependent optimal control fields. Phys. Chem. Chem. Phys. 22(40), 22889–22899 (2020)CrossRef
12.
Zurück zum Zitat Sallam, T., Attiya, A.M.: Convolutional neural network for 2D adaptive beamforming of phased array antennas with robustness to array imperfections. Int. J. Microwave Wireless Technol. 13(10), 1096–1102 (2021)CrossRef Sallam, T., Attiya, A.M.: Convolutional neural network for 2D adaptive beamforming of phased array antennas with robustness to array imperfections. Int. J. Microwave Wireless Technol. 13(10), 1096–1102 (2021)CrossRef
13.
Zurück zum Zitat Sallam, T., Attiya, A.: Convolutional neural network for coupling matrix extraction of microwave filters. Appl. Comput. Electromagn. Soc. J. (ACES) 37(7), 805–810 (2022) Sallam, T., Attiya, A.: Convolutional neural network for coupling matrix extraction of microwave filters. Appl. Comput. Electromagn. Soc. J. (ACES) 37(7), 805–810 (2022)
14.
Zurück zum Zitat Haykin, S.: Neural Network: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River, NJ (1999)MATH Haykin, S.: Neural Network: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River, NJ (1999)MATH
15.
Zurück zum Zitat El Zooghby, A.H., Christodoulou, C.G., Georgiopoulos, M.: Performance of radial-basis function networks for direction of arrival estimation with antenna arrays. IEEE Trans. Antennas Propag. 45(11), 1611–1617 (1997)CrossRef El Zooghby, A.H., Christodoulou, C.G., Georgiopoulos, M.: Performance of radial-basis function networks for direction of arrival estimation with antenna arrays. IEEE Trans. Antennas Propag. 45(11), 1611–1617 (1997)CrossRef
16.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceeding of the 3rd International Conferences on Learning Representations (ICLR), pp. 1–15, San Diego, CA, USA (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceeding of the 3rd International Conferences on Learning Representations (ICLR), pp. 1–15, San Diego, CA, USA (2015)
Metadaten
Titel
Deep-learning-based neural network for design of a dual-band coupled-line trans-directional coupler
verfasst von
Tarek Sallam
Eman M. Eldesouki
Ahmed M. Attiya
Publikationsdatum
14.08.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 5/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02082-0