Skip to main content

2025 | OriginalPaper | Buchkapitel

Deep Learning-Based Pose Estimation and Real-Time Toddler Fall Detection System

verfasst von : Chaitreya Bhelkar, Alkesh Tripathi, Shweta Mishra, Lokesh Malviya, Snehal Awachat

Erschienen in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many falls happen each year which cause severe medical issues. An early detection could allow the injured toddler to receive medical care right away. Deep learning techniques like long short-term memory (LSTM) are proving to be more efficient than the use of sensors to detect the fall. These new techniques can right away detect the fall and inform the concerned ones in time. We employed a camera-based system along with human pose estimation by using OpenPifPaf to extract the keypoints (elbows, shoulders, knees, etc.) of the toddler, these keypoints are passed on to the LSTM model for classification. The LSTM-based neural network predicts the falls into four classes: ‘Normal’, ‘Fall Warning’, ‘No Fall’, and ‘Fall’. To train this deep learning model, we used the UP-Fall Detection dataset, which consists of videos of various activities. This paper aims to reduce the number of fatal injuries in toddlers by using a deep learning real-time fall detection system that will notify the parents and caregivers as soon as a fall occurs so that the toddler can receive medical care immediately if necessary.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Stanford Medicine Children’s Health. Stanford Medicine Children’s Health—Lucile Packard Children’s Hospital Stanford (n.d) Stanford Medicine Children’s Health. Stanford Medicine Children’s Health—Lucile Packard Children’s Hospital Stanford (n.d)
4.
Zurück zum Zitat Leong LH, Hussain AB, Zulkifley MA, Zaki W (2015) Camera-based toddler fall detection system by using kalman filter, vol 81, pp 383–388 Leong LH, Hussain AB, Zulkifley MA, Zaki W (2015) Camera-based toddler fall detection system by using kalman filter, vol 81, pp 383–388
7.
Zurück zum Zitat Awachat S (2023) Multi-label classification performance using deep learning. Int J Next-Generation Comput 14(1) Awachat S (2023) Multi-label classification performance using deep learning. Int J Next-Generation Comput 14(1)
10.
Zurück zum Zitat Lindgren B (2016) The rise in life expectancy, health trends among the elderly, and the demand for care—a selected literature review (August 2016). NBER Working Paper No. w22521 Lindgren B (2016) The rise in life expectancy, health trends among the elderly, and the demand for care—a selected literature review (August 2016). NBER Working Paper No. w22521
13.
Zurück zum Zitat United Nations, Department of Economic and Social Affairs, Population Division (2019) World population prospects 2019: highlights (ST/ESA/SER.A/423) United Nations, Department of Economic and Social Affairs, Population Division (2019) World population prospects 2019: highlights (ST/ESA/SER.A/423)
18.
Zurück zum Zitat Nguyen T-T, Cho M-C, Lee T-S (2009) Automatic fall detection using wearable biomedical signal measurement terminal. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, Minneapolis, MN, USA, pp 5203–5206. https://doi.org/10.1109/IEMBS.2009.5334079 Nguyen T-T, Cho M-C, Lee T-S (2009) Automatic fall detection using wearable biomedical signal measurement terminal. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, Minneapolis, MN, USA, pp 5203–5206. https://​doi.​org/​10.​1109/​IEMBS.​2009.​5334079
19.
Zurück zum Zitat Province MA, Hadley EC, Hornbrook MC, Lipsitz LA, Miller JP, Mulrow CD, Ory MG, Sattin RW, Tinetti ME, Wolf SL (1995) The effects of exercise on falls in elderly patients. A preplanned meta-analysis of the FICSIT Trials. Frailty and injuries: cooperative studies of intervention techniques. JAMA 273(17):1341–1347. PMID: 7715058 Province MA, Hadley EC, Hornbrook MC, Lipsitz LA, Miller JP, Mulrow CD, Ory MG, Sattin RW, Tinetti ME, Wolf SL (1995) The effects of exercise on falls in elderly patients. A preplanned meta-analysis of the FICSIT Trials. Frailty and injuries: cooperative studies of intervention techniques. JAMA 273(17):1341–1347. PMID: 7715058
26.
Zurück zum Zitat Oliver SA, Anuradha M, Justus JJ, Maheshwari N (2018) Optimized low computational algorithm for elderly fall detection based on machine learning techniques. Biomed Res (0970–938X) 29(20) Oliver SA, Anuradha M, Justus JJ, Maheshwari N (2018) Optimized low computational algorithm for elderly fall detection based on machine learning techniques. Biomed Res (0970–938X) 29(20)
28.
Zurück zum Zitat Taufeeque M, Koita S, Spicher N, Deserno TM (2021) Multi-camera, multi-person, and real-time fall detection using long short term memory. In: Medical imaging 2021: imaging informatics for healthcare, research, and applications, vol 1160. SPIE, pp 35–42 Taufeeque M, Koita S, Spicher N, Deserno TM (2021) Multi-camera, multi-person, and real-time fall detection using long short term memory. In: Medical imaging 2021: imaging informatics for healthcare, research, and applications, vol 1160. SPIE, pp 35–42
Metadaten
Titel
Deep Learning-Based Pose Estimation and Real-Time Toddler Fall Detection System
verfasst von
Chaitreya Bhelkar
Alkesh Tripathi
Shweta Mishra
Lokesh Malviya
Snehal Awachat
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_13