Skip to main content
Erschienen in: Design Automation for Embedded Systems 3/2020

09.04.2020

Deep learning controller design of embedded control system for maglev train via deep belief network algorithm

verfasst von: Ding-gang Gao, You-gang Sun, Shi-hui Luo, Guo-bin Lin, Lai-sheng Tong

Erschienen in: Design Automation for Embedded Systems | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The maglev train has been successful in practice as a new type of ground transportation. Owing to the inherent nonlinearity and open-loop instability of the electromagnetic suspension (EMS) system, an analogue or a digital controller is used to control the maglev trains’ stability. With the rapid development of embedded systems and artificial intelligence, intelligent digital control has begun to replace the conventional analogue control technology creating a new approach to the EMS control system. This paper proposes a hardware module for an embedded levitation controller based on digital signal processor and field programmable gate array, hence producing an open loop mathematical model of the embedded maglev control system. The deep learning controller is then developed based on a deep belief network (DBN) algorithm and a proportional integral derivative feedback controller. The simulations are conducted in the MATLAB environment after training the DBN. Simulation results are compared with those obtained from the conventional controller. Finally, experiments are implemented to examine the feasibility in practice of the application of the DBN into a maglev embedded control system. The system, with the proposed controller, can accurately track the target airgap of 8 mm. The maximum tracking error of sinusoidal trajectory is 0.17 mm and the maximum tracking error of step trajectory is 0.98 mm. Both simulation and experimental results are included in this paper to show that the proposed deep learning controller can be more robust and less complicated to implement in maglev control applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thornton RD (2009) Efficient and affordable maglev opportunities in the United States. Proc IEEE 97:1901–1921 Thornton RD (2009) Efficient and affordable maglev opportunities in the United States. Proc IEEE 97:1901–1921
2.
Zurück zum Zitat Sun Y, Xu J, Qiang H, Chen C, Lin G (2019) Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method. Measurement 141:217–226 Sun Y, Xu J, Qiang H, Chen C, Lin G (2019) Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method. Measurement 141:217–226
3.
Zurück zum Zitat Boldea I, Tutelea L, Xu W et al (2017) Linear electric machines, drives, and MAGLEVs: an overview. IEEE Trans Ind Electron 65(9):7504–7515 Boldea I, Tutelea L, Xu W et al (2017) Linear electric machines, drives, and MAGLEVs: an overview. IEEE Trans Ind Electron 65(9):7504–7515
4.
Zurück zum Zitat Sun Y, Xu J, Qiang H, Lin G (2019) Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans Ind Electron 66(11):8589–8599 Sun Y, Xu J, Qiang H, Lin G (2019) Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans Ind Electron 66(11):8589–8599
5.
Zurück zum Zitat Sun Y, Xu J, Qiang H, Wang W, Lin G (2019) Hopf bifurcation analysis of maglev vehicle–guideway interaction vibration system and stability control based on fuzzy adaptive theory. Comput Ind 108:197–209 Sun Y, Xu J, Qiang H, Wang W, Lin G (2019) Hopf bifurcation analysis of maglev vehicle–guideway interaction vibration system and stability control based on fuzzy adaptive theory. Comput Ind 108:197–209
6.
Zurück zum Zitat Surya S, Ramyashree S, Nidhi R et al (2015) Development of a simple MAGLEV system for a low-speed wind tunnel. In: 2015 International conference on power and advanced control engineering (ICPACE). IEEE, pp 441–444 Surya S, Ramyashree S, Nidhi R et al (2015) Development of a simple MAGLEV system for a low-speed wind tunnel. In: 2015 International conference on power and advanced control engineering (ICPACE). IEEE, pp 441–444
7.
Zurück zum Zitat Chuan M, Changsheng Z (2017) Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm. IEEE Trans Ind Electron 65(5):4177–4186 Chuan M, Changsheng Z (2017) Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm. IEEE Trans Ind Electron 65(5):4177–4186
8.
Zurück zum Zitat Anuradha P, Rallapalli H, Narsimha G (2018) Energy efficient scheduling algorithm for the multicore heterogeneous embedded architectures. Des Autom Embed Syst 22(1–2):1–12 Anuradha P, Rallapalli H, Narsimha G (2018) Energy efficient scheduling algorithm for the multicore heterogeneous embedded architectures. Des Autom Embed Syst 22(1–2):1–12
9.
Zurück zum Zitat Kaleem Z, Yoon TM, Lee C (2015) Energy efficient outdoor light monitoring and control architecture using embedded system. IEEE Embed Syst Lett 8(1):18–21 Kaleem Z, Yoon TM, Lee C (2015) Energy efficient outdoor light monitoring and control architecture using embedded system. IEEE Embed Syst Lett 8(1):18–21
10.
Zurück zum Zitat de Souza RH, Savazzi S, Becker LB (2015) Network design and planning of wireless embedded systems for industrial automation. Des Autom Embed Syst 19(4):367–388 de Souza RH, Savazzi S, Becker LB (2015) Network design and planning of wireless embedded systems for industrial automation. Des Autom Embed Syst 19(4):367–388
11.
Zurück zum Zitat Greatwood C, Richards AG (2019) Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control. Auton Robots 43:1681–1693 Greatwood C, Richards AG (2019) Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control. Auton Robots 43:1681–1693
12.
Zurück zum Zitat Tutuncu K, Ozcan R (2019) Embedded fuzzy logic control system for refrigerated display cabinets. Arab J Sci Eng 44:9529–9543 Tutuncu K, Ozcan R (2019) Embedded fuzzy logic control system for refrigerated display cabinets. Arab J Sci Eng 44:9529–9543
13.
Zurück zum Zitat Gupta C, Tewari VK, Kumar AA et al (2019) Automatic tractor slip-draft embedded control system. Comput Electron Agric 165:1–11 Gupta C, Tewari VK, Kumar AA et al (2019) Automatic tractor slip-draft embedded control system. Comput Electron Agric 165:1–11
14.
Zurück zum Zitat Hidalgo MC, Garcia C, Angélico BA et al (2019) Embedded sliding mode controller applied to control valves with high friction. J Control Autom Electr Syst 30(5):677–687 Hidalgo MC, Garcia C, Angélico BA et al (2019) Embedded sliding mode controller applied to control valves with high friction. J Control Autom Electr Syst 30(5):677–687
16.
Zurück zum Zitat Mantere M, Uusitalo I, Sailio M et al (2012) Challenges of machine learning based monitoring for industrial control system networks. In: 26th International conference on advanced information networking and applications workshops. IEEE, pp 968–972 Mantere M, Uusitalo I, Sailio M et al (2012) Challenges of machine learning based monitoring for industrial control system networks. In: 26th International conference on advanced information networking and applications workshops. IEEE, pp 968–972
17.
Zurück zum Zitat Zhu X, Guan C, Wu J et al (2006) Expectation-maximization method for EEG-based continuous cursor control. EURASIP J Adv Signal Process 2007(1):1–10 Zhu X, Guan C, Wu J et al (2006) Expectation-maximization method for EEG-based continuous cursor control. EURASIP J Adv Signal Process 2007(1):1–10
18.
Zurück zum Zitat Sze V, Chen YH, Yang TJ et al (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105(12):2295–2329 Sze V, Chen YH, Yang TJ et al (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105(12):2295–2329
19.
Zurück zum Zitat Zeng Z, Pantic M, Roisman GI et al (2008) A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans Pattern Anal Mach Intell 31(1):39–58 Zeng Z, Pantic M, Roisman GI et al (2008) A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans Pattern Anal Mach Intell 31(1):39–58
20.
Zurück zum Zitat Yan C, Xie H, Yang D et al (2017) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295 Yan C, Xie H, Yang D et al (2017) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295
21.
Zurück zum Zitat Ji S, Xu W, Yang M et al (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231 Ji S, Xu W, Yang M et al (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231
22.
Zurück zum Zitat Umer S, Dhara BC, Chanda B (2019) Face recognition using fusion of feature learning techniques. Measurement 146:43–54 Umer S, Dhara BC, Chanda B (2019) Face recognition using fusion of feature learning techniques. Measurement 146:43–54
23.
Zurück zum Zitat Ye L, Yao C, Tao L, Cai R, Gong X (2018) Convolutional neural network construction method for embedded FPGAs oriented edge computing. J Comput Res Dev 55(3):551–562 Ye L, Yao C, Tao L, Cai R, Gong X (2018) Convolutional neural network construction method for embedded FPGAs oriented edge computing. J Comput Res Dev 55(3):551–562
24.
Zurück zum Zitat Wan L, Jinning D, Sihui C et al (2019) Design and simulation of Butterworth lowpass filter based on CFA. J Hubei Univ (Nat Sci) 41(3):313–317 Wan L, Jinning D, Sihui C et al (2019) Design and simulation of Butterworth lowpass filter based on CFA. J Hubei Univ (Nat Sci) 41(3):313–317
25.
Zurück zum Zitat Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetMATH Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetMATH
26.
Zurück zum Zitat Larochelle H, Bengio Y, Louradour J et al (2009) Exploring strategies for training deep neural networks. J Mach Learn Res 1(10):1–40MATH Larochelle H, Bengio Y, Louradour J et al (2009) Exploring strategies for training deep neural networks. J Mach Learn Res 1(10):1–40MATH
27.
Zurück zum Zitat Aoyagi M (2010) Stochastic complexity and generalization error of a restricted Boltzmann machine in Bayesian estimation. J Mach Learn Res 11(1):1243–1272MathSciNetMATH Aoyagi M (2010) Stochastic complexity and generalization error of a restricted Boltzmann machine in Bayesian estimation. J Mach Learn Res 11(1):1243–1272MathSciNetMATH
Metadaten
Titel
Deep learning controller design of embedded control system for maglev train via deep belief network algorithm
verfasst von
Ding-gang Gao
You-gang Sun
Shi-hui Luo
Guo-bin Lin
Lai-sheng Tong
Publikationsdatum
09.04.2020
Verlag
Springer US
Erschienen in
Design Automation for Embedded Systems / Ausgabe 3/2020
Print ISSN: 0929-5585
Elektronische ISSN: 1572-8080
DOI
https://doi.org/10.1007/s10617-020-09237-3