Der ubiquitäre Einsatz moderner Informations- und Kommunikationstechnologie verändert sämtliche Wirtschaftszweige und revolutioniert somit auch die Landwirtschaft. Der vorliegende Beitrag präsentiert dahingehend eine Big-Data-Analytics-Fallstudie aus dem Bereich des Weinanbaus, wo mithilfe von mobilen Aufnahmegeräten umfangreiches Bildmaterial aufgezeichnet wurde, um eine automatisierte Objekterkennung zur Unterstützung von operativen Winzertätigkeiten realisieren zu können. Dazu gehören zum Beispiel das Zählen von Reben, die Identifikation von Rebfehlstellen und die Prognose von potenziellem Erntegut. Hierbei besteht die Herausforderung unter anderem darin, landwirtschaftlich relevante Weinobjekte wie Reben, Trauben und Beeren über die einzelnen Hierarchieebenen hinweg erkennen zu können und diese auch in Bezug auf bewegtes Bildmaterial folgerichtig zu zählen. Zur Realisierung werden einige Lösungsansätze vorgestellt, die auf modernen Deep-Learning-Verfahren der bildbasierten Objekterkennung aufbauen. Der Beitrag wird abgerundet mit einer Diskussion und Implikationen für analytische Anwendungen in der landwirtschaftlichen Praxis.
Anzeige
Bitte loggen Sie sich ein, um Zugang zu Ihrer Lizenz zu erhalten.
Künstliche neuronale Netze sind Modelle des maschinellen Lernens, deren Aufbau dem biologischen Vorbild von neuronalen Vernetzungen im Gehirn nachempfunden ist.