Skip to main content

2025 | OriginalPaper | Buchkapitel

Deep Learning in the Context of Artificial Intelligence: Advancements and Applications

verfasst von : Arpana Chaturvedi, Nitish Pathak, Neelam Sharma, R. Mahaveerakannan

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Leukaemia and childhood cancers are becoming increasingly prevalent in India, highlighting the urgent need for advancements in early detection methodologies. This research paper explores the application of deep learning (DL) and its techniques in examining blood cells to aid in the diagnosis of blood cancers. DL algorithms possess the ability to accurately classify and segment cells in blood smears, thereby facilitating early-stage cancer detection. The accuracy of cell segmentation has significantly improved due to the utilization of advanced DL techniques such as generative adversarial networks (GANs) (Wang et al. in Pattern Recogn Lett 141:122–128, 2021), which effectively address challenges like overlapping nuclei and morphological changes. Additionally, convolutional neural networks (CNNs), enhanced through transfer learning methods (Alakus and Akkus in Comput Biol Med 143:104551, 2022), have exhibited remarkable precision in classifying blood cancer cells. The primary aim is to combine progress in deep learning with a Clinical Decision Support System (CDSS) that quickly converges to provide accurate diagnoses and improve patient outcomes is the primary objective. The incorporation of federated learning models with explainable AI (XAI) (Saraswat et al. in IEEE Access 10:84486–84517, 2022), which ensures privacy and transparency in data processing, has bolstered trust in DL applications. The shift in DL from segmentation to classification signifies a paradigm shift in how India tackles cancer detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat FallahMadvari, R. (2022). Artificial intelligence (AI), machine learning (ML) and deep learning (DL) on health, safety and environment (HSE). Archives of Occupational Health, 6(4), 1321–1322. FallahMadvari, R. (2022). Artificial intelligence (AI), machine learning (ML) and deep learning (DL) on health, safety and environment (HSE). Archives of Occupational Health, 6(4), 1321–1322.
2.
Zurück zum Zitat Seoni, S., Jahmunah, V., Salvi, M., Barua, P. D., Molinari, F., & Acharya, U. R. (2023). Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013–2023). Computers in Biology and Medicine, 165, 107441.CrossRef Seoni, S., Jahmunah, V., Salvi, M., Barua, P. D., Molinari, F., & Acharya, U. R. (2023). Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013–2023). Computers in Biology and Medicine, 165, 107441.CrossRef
3.
Zurück zum Zitat Cappelli, E., Felici, G., & Weitschek, E. (2018). Combining DNA methylation and RNA sequencing data of cancer for supervised knowledge extraction. BioData mining, 11(1), 1–23.CrossRef Cappelli, E., Felici, G., & Weitschek, E. (2018). Combining DNA methylation and RNA sequencing data of cancer for supervised knowledge extraction. BioData mining, 11(1), 1–23.CrossRef
4.
Zurück zum Zitat Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A review of recent deep learning approaches in human-centered machine learning. Sensors, 21(7), 2514.CrossRef Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A review of recent deep learning approaches in human-centered machine learning. Sensors, 21(7), 2514.CrossRef
5.
Zurück zum Zitat Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., & Ding, Z. (2015). Brain tumor grading based on neural networks and convolutional neural networks. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 699–702). IEEE. Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., & Ding, Z. (2015). Brain tumor grading based on neural networks and convolutional neural networks. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 699–702). IEEE.
6.
Zurück zum Zitat Alghadier, M., Kusuma, K., Manjunatha, D., Kabra, P., & Zaleha, M. (2023). A study of various applications of artificial intelligence (AI) and machine learning (ML) for healthcare services. Technology, 5(1), 87–94. Alghadier, M., Kusuma, K., Manjunatha, D., Kabra, P., & Zaleha, M. (2023). A study of various applications of artificial intelligence (AI) and machine learning (ML) for healthcare services. Technology, 5(1), 87–94.
8.
Zurück zum Zitat Ali, A., Manzoor, M. F., Ahmad, N., Aadil, R. M., Qin, H., Siddique, R., Riaz, S., Ahmad, A., Korma, S. A., Khalid, W., & Aizhong, L. (2022). The burden of cancer, government strategic policies, and challenges in Pakistan: A comprehensive review. Frontiers in Nutrition, 9, 940514.CrossRef Ali, A., Manzoor, M. F., Ahmad, N., Aadil, R. M., Qin, H., Siddique, R., Riaz, S., Ahmad, A., Korma, S. A., Khalid, W., & Aizhong, L. (2022). The burden of cancer, government strategic policies, and challenges in Pakistan: A comprehensive review. Frontiers in Nutrition, 9, 940514.CrossRef
9.
Zurück zum Zitat Raina, R., Gondhi, N. K., Chaahat, Singh, D., Kaur, M., & Lee, H. N. (2023). A systematic review on acute leukemia detection using deep learning techniques. Archives of Computational Methods in Engineering, 30(1), 251–270.CrossRef Raina, R., Gondhi, N. K., Chaahat, Singh, D., Kaur, M., & Lee, H. N. (2023). A systematic review on acute leukemia detection using deep learning techniques. Archives of Computational Methods in Engineering, 30(1), 251–270.CrossRef
10.
Zurück zum Zitat Sakib, S., Yasmin, N., Tanzeem, A. K., Shorna, F., Md. Hasib, K., & Alam, S. B. (2022). Breast cancer detection and classification: A comparative analysis using machine learning algorithms. In Proceedings of Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021 (pp. 703–717). Springer Singapore. Sakib, S., Yasmin, N., Tanzeem, A. K., Shorna, F., Md. Hasib, K., & Alam, S. B. (2022). Breast cancer detection and classification: A comparative analysis using machine learning algorithms. In Proceedings of Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021 (pp. 703–717). Springer Singapore.
13.
Zurück zum Zitat Mazurowski, M. A., Dong, H., Gu, H., Yang, J., Konz, N., & Zhang, Y. (2023). Segment anything model for medical image analysis: An experimental study. Medical Image Analysis, 89, 102918.CrossRef Mazurowski, M. A., Dong, H., Gu, H., Yang, J., Konz, N., & Zhang, Y. (2023). Segment anything model for medical image analysis: An experimental study. Medical Image Analysis, 89, 102918.CrossRef
14.
Zurück zum Zitat Torrente, M., Sousa, P. A., Hernández, R., Blanco, M., Calvo, V., Collazo, A., Guerreiro, G. R., Núñez, B., Pimentao, J., Sánchez, J. C., & Campos, M. (2022). An artificial intelligence-based tool for data analysis and prognosis in cancer patients: Results from the Clarify study. Cancers, 14(16), 4041.CrossRef Torrente, M., Sousa, P. A., Hernández, R., Blanco, M., Calvo, V., Collazo, A., Guerreiro, G. R., Núñez, B., Pimentao, J., Sánchez, J. C., & Campos, M. (2022). An artificial intelligence-based tool for data analysis and prognosis in cancer patients: Results from the Clarify study. Cancers, 14(16), 4041.CrossRef
15.
Zurück zum Zitat Liefaard, M. C., Lips, E. H., Wesseling, J., Hylton, N. M., Lou, B., Mansi, T., & Pusztai, L. (2021). The way of the future: Personalizing treatment plans through technology. American Society of Clinical Oncology Educational Book, 41, 12–23.CrossRef Liefaard, M. C., Lips, E. H., Wesseling, J., Hylton, N. M., Lou, B., Mansi, T., & Pusztai, L. (2021). The way of the future: Personalizing treatment plans through technology. American Society of Clinical Oncology Educational Book, 41, 12–23.CrossRef
16.
Zurück zum Zitat Chen, Z. Y., Sun, M., & Han, X. X. (2023). Prediction-driven collaborative emergency medical resource allocation with deep learning and optimization. Journal of the Operational Research Society, 74(2), 590–603.CrossRef Chen, Z. Y., Sun, M., & Han, X. X. (2023). Prediction-driven collaborative emergency medical resource allocation with deep learning and optimization. Journal of the Operational Research Society, 74(2), 590–603.CrossRef
17.
Zurück zum Zitat Khan, I. U., Azam, S., Montaha, S., Al Mahmud, A., Rafid, A. R. H., Hasan, M. Z., & Jonkman, M. (2022). An effective approach to address processing time and computational complexity employing modified CCT for lung disease classification. Intelligent Systems with Applications, 16, 200147.CrossRef Khan, I. U., Azam, S., Montaha, S., Al Mahmud, A., Rafid, A. R. H., Hasan, M. Z., & Jonkman, M. (2022). An effective approach to address processing time and computational complexity employing modified CCT for lung disease classification. Intelligent Systems with Applications, 16, 200147.CrossRef
18.
Zurück zum Zitat Elbes, M., AlZu’bi, S., Kanan, T., Mughaid, A., & Abushanab, S. (2023). Big dermatological data service for precise and immediate diagnosis by utilizing pre-trained learning models. Elbes, M., AlZu’bi, S., Kanan, T., Mughaid, A., & Abushanab, S. (2023). Big dermatological data service for precise and immediate diagnosis by utilizing pre-trained learning models.
19.
Zurück zum Zitat Samee, N. A., Mahmoud, N. F., Atteia, G., Abdallah, H. A., Alabdulhafith, M., Al-Gaashani, M. S., Ahmad, S., & Muthanna, M. S. (2022). Classification framework for medical diagnosis of brain tumor with an effective hybrid transfer learning model. Diagnostics, 12(10), 2541.CrossRef Samee, N. A., Mahmoud, N. F., Atteia, G., Abdallah, H. A., Alabdulhafith, M., Al-Gaashani, M. S., Ahmad, S., & Muthanna, M. S. (2022). Classification framework for medical diagnosis of brain tumor with an effective hybrid transfer learning model. Diagnostics, 12(10), 2541.CrossRef
20.
Zurück zum Zitat Hussain, H. K., Tariq, A., Gill, A. Y., & Ahmad, A. (2022). Transforming healthcare: The rapid rise of artificial intelligence revolutionizing healthcare applications. BULLET: Jurnal Multidisiplin Ilmu, 1(02). Hussain, H. K., Tariq, A., Gill, A. Y., & Ahmad, A. (2022). Transforming healthcare: The rapid rise of artificial intelligence revolutionizing healthcare applications. BULLET: Jurnal Multidisiplin Ilmu1(02).
21.
Zurück zum Zitat Alakus, H., & Akkus, Z. (2022). Transfer learning for blood cell image classification. Computers in Biology and Medicine, 143, 104551. Alakus, H., & Akkus, Z. (2022). Transfer learning for blood cell image classification. Computers in Biology and Medicine, 143, 104551.
22.
Zurück zum Zitat Wang, L., Dong, Z., & Biao, C. (2021). GAN-based cell segmentation for blood microscopic image analysis. Pattern Recognition Letters, 141, 122–128.CrossRef Wang, L., Dong, Z., & Biao, C. (2021). GAN-based cell segmentation for blood microscopic image analysis. Pattern Recognition Letters, 141, 122–128.CrossRef
23.
Zurück zum Zitat Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial intelligence and machine learning in pathology: The present landscape of supervised methods. Academic Pathology, 6, 2374289519873088.CrossRef Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial intelligence and machine learning in pathology: The present landscape of supervised methods. Academic Pathology, 6, 2374289519873088.CrossRef
24.
Zurück zum Zitat Saraswat, D., Bhattacharya, P., Verma, A., Prasad, V. K., Tanwar, S., Sharma, G., Bokoro, P. N., & Sharma, R. (2022). Explainable AI for healthcare 5.0: Opportunities and challenges. IEEE Access, 10, 84486–84517.CrossRef Saraswat, D., Bhattacharya, P., Verma, A., Prasad, V. K., Tanwar, S., Sharma, G., Bokoro, P. N., & Sharma, R. (2022). Explainable AI for healthcare 5.0: Opportunities and challenges. IEEE Access, 10, 84486–84517.CrossRef
27.
Zurück zum Zitat Ahmed, S. F., Alam, M. S., Hassan, M., Rozbu, M. R., Ishtiak, T., Rafa, N., Mofijur, M., Shawkat Ali, A. B., & Gandomi, A. H. (2023). Deep learning modelling techniques: current progress, applications, advantages, and challenges. Artificial Intelligence Review, 56(11), 13521–13617.CrossRef Ahmed, S. F., Alam, M. S., Hassan, M., Rozbu, M. R., Ishtiak, T., Rafa, N., Mofijur, M., Shawkat Ali, A. B., & Gandomi, A. H. (2023). Deep learning modelling techniques: current progress, applications, advantages, and challenges. Artificial Intelligence Review, 56(11), 13521–13617.CrossRef
28.
Zurück zum Zitat Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 1–74.CrossRef Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 1–74.CrossRef
29.
Zurück zum Zitat Tran, K. A., Kondrashova, O., Bradley, A., Williams, E. D., Pearson, J. V., & Waddell, N. (2021). Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Medicine, 13(1), 1–17.CrossRef Tran, K. A., Kondrashova, O., Bradley, A., Williams, E. D., Pearson, J. V., & Waddell, N. (2021). Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Medicine, 13(1), 1–17.CrossRef
Metadaten
Titel
Deep Learning in the Context of Artificial Intelligence: Advancements and Applications
verfasst von
Arpana Chaturvedi
Nitish Pathak
Neelam Sharma
R. Mahaveerakannan
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_3