Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

Deep Learning Models for Classification of Remotely Sensed Data of Sugarcane

verfasst von : Mansi Kambli, Bhakti Palkar

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The traditional machine learning algorithms are giving way to approaches for deep learning in computer vision, which refers to a computer's capacity to infer meaning from digital images and videos. Sugarcane categorization is important for agricultural management and monitoring. Traditional crop categorization methods based on manual inspection or restricted ground-based data gathering are time-consuming and frequently inaccurate. As a result, an automated and efficient strategy is suggested that requires the use of remote sensing data and the capabilities of deep learning algorithms. A dataset made from multispectral Sentinel imagery is used for the classification of sugarcane. This approach seeks to separate sugarcane-growing regions from other regions in Sentinel-2 images using VGG19, MobileNetV2, and CNN as feature extractors. These findings illustrate the feature extraction utilizing deep learning models with an SVM classifier for sugarcane. By considering variables such as distinct spectral bands, temporal fluctuations, and potential difficulties in separating sugarcane from other land cover types, the objective is to construct and check working of deep learning models for categorizing sugarcane locations using Sentinel-2 data. The sugarcane classification can further be used to find dense and sparse vegetation after the classification is done with deep learning models. The outcomes of this study will help to improve sugarcane categorization techniques and will help farmers, researchers, and agricultural stakeholders make better crop management, yield estimation, and resource optimization decisions in sugarcane farming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90CrossRef Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90CrossRef
2.
Zurück zum Zitat Srivastava S, Kumar P, Mohd N, Singh A, Gill FS (2020) A novel deep learning framework approach for sugarcane disease detection. SN Comput Sci 1(1):1–7 Srivastava S, Kumar P, Mohd N, Singh A, Gill FS (2020) A novel deep learning framework approach for sugarcane disease detection. SN Comput Sci 1(1):1–7
3.
Zurück zum Zitat Virnodkar SS, Pachghare VK, Patil VC, Jha SK (2022) CaneSat dataset to leverage convolutional neural networks for sugarcane classification from Sentinel-2. J King Saud Univ Comput Inf Sci 34(6):3343–3355 Virnodkar SS, Pachghare VK, Patil VC, Jha SK (2022) CaneSat dataset to leverage convolutional neural networks for sugarcane classification from Sentinel-2. J King Saud Univ Comput Inf Sci 34(6):3343–3355
4.
Zurück zum Zitat Victor B, He Z, Nibali A (2022)A systematic review of the use of deep learning in satellite imagery for agriculture. arXiv preprint arXiv:2210.01272 Victor B, He Z, Nibali A (2022)A systematic review of the use of deep learning in satellite imagery for agriculture. arXiv preprint arXiv:​2210.​01272
6.
Zurück zum Zitat Ammar A, Koubaa A, Benjdira B (2021) Deep-learning-based automated palm tree counting and geolocation in large farms from aerial geotagged images. Agronomy 11(8) Ammar A, Koubaa A, Benjdira B (2021) Deep-learning-based automated palm tree counting and geolocation in large farms from aerial geotagged images. Agronomy 11(8)
7.
Zurück zum Zitat Zhang X, Zhou Y, Luo J (2022) Deep learning for processing and analysis of remote sensing big data: a technical review. Big Earth Data 6(4):527–560CrossRef Zhang X, Zhou Y, Luo J (2022) Deep learning for processing and analysis of remote sensing big data: a technical review. Big Earth Data 6(4):527–560CrossRef
8.
Zurück zum Zitat Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709CrossRef Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709CrossRef
9.
Zurück zum Zitat Basu S, Ganguly S, Mukhopadhyay S, DiBiano R, Karki M, Nemani R (2015) DeepSat: a learning framework for satellite imagery. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, pp 1–10 Basu S, Ganguly S, Mukhopadhyay S, DiBiano R, Karki M, Nemani R (2015) DeepSat: a learning framework for satellite imagery. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, pp 1–10
10.
Zurück zum Zitat Mudereri BT (2019) A comparative analysis of PlanetScope and Sentinel-2 space-borne sensors in mapping Striga weed using Guided Regularised Random Forest classification ensemble. Int Arch Photogramm Remote Sens Spat Inf Sci 42:701–708 Mudereri BT (2019) A comparative analysis of PlanetScope and Sentinel-2 space-borne sensors in mapping Striga weed using Guided Regularised Random Forest classification ensemble. Int Arch Photogramm Remote Sens Spat Inf Sci 42:701–708
11.
Zurück zum Zitat Deng J, Dong W, Socher R, Li J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. IEEE Deng J, Dong W, Socher R, Li J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. IEEE
12.
Zurück zum Zitat Mitra A, Alakananda S, Vangipuram LT, Bapatla AK, Bathalapalli VKVV, Mohanty SP, Kougianos E, Ray C (2022) Everything you wanted to know about smart agriculture. arXiv preprint arXiv:2201.04754 Mitra A, Alakananda S, Vangipuram LT, Bapatla AK, Bathalapalli VKVV, Mohanty SP, Kougianos E, Ray C (2022) Everything you wanted to know about smart agriculture. arXiv preprint arXiv:​2201.​04754
13.
Zurück zum Zitat Kattenborn T, Leitloff J, Schiefer F, Hinz S (2021) Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens 173:24–49CrossRef Kattenborn T, Leitloff J, Schiefer F, Hinz S (2021) Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens 173:24–49CrossRef
14.
Zurück zum Zitat Virnodkar S, Pachghare VK, Patil VC, Jha SK (2021) Performance evaluation of RF and SVM for sugarcane classification using sentinel-2 NDVI time-series. In: 9th international proceedings on proceedings, pp 163–174. Springer, Singapore Virnodkar S, Pachghare VK, Patil VC, Jha SK (2021) Performance evaluation of RF and SVM for sugarcane classification using sentinel-2 NDVI time-series. In: 9th international proceedings on proceedings, pp 163–174. Springer, Singapore
15.
Zurück zum Zitat Nihar A, Patel NR, Pokhariyal S, Danodia A (2021) Sugarcane crop type discrimination and area mapping at field scale using Sentinel images and machine learning methods. J Indian Soc Rem Sens 1–9 Nihar A, Patel NR, Pokhariyal S, Danodia A (2021) Sugarcane crop type discrimination and area mapping at field scale using Sentinel images and machine learning methods. J Indian Soc Rem Sens 1–9
16.
Zurück zum Zitat Khan HR, Gillani Z, Jamal MH, Athar A, Chaudhry MT, Chao H, He Y, Chen M (2023) Early identification of crop type for smallholder farming systems using deep learning on time-series sentinel-2 imagery. Sensors 23(4):1779CrossRef Khan HR, Gillani Z, Jamal MH, Athar A, Chaudhry MT, Chao H, He Y, Chen M (2023) Early identification of crop type for smallholder farming systems using deep learning on time-series sentinel-2 imagery. Sensors 23(4):1779CrossRef
17.
Zurück zum Zitat Kai PM, Oliveira BM, da Costa RM (2022) Deep learning-based method for classification of sugarcane varieties. Agronomy 12(11) Kai PM, Oliveira BM, da Costa RM (2022) Deep learning-based method for classification of sugarcane varieties. Agronomy 12(11)
18.
Zurück zum Zitat Wijayanto AW. Triscowati DW, Marsuhandi AH (2020) Maize field area detection in East Java, Indonesia: an integrated multispectral remote sensing and machine learning approach. In: 2020 12th international conference on information technology and electrical engineering (ICITEE), pp 168–173. IEEE Wijayanto AW. Triscowati DW, Marsuhandi AH (2020) Maize field area detection in East Java, Indonesia: an integrated multispectral remote sensing and machine learning approach. In: 2020 12th international conference on information technology and electrical engineering (ICITEE), pp 168–173. IEEE
19.
Zurück zum Zitat Virnodkar SS, Pachghare VK, Patil VC, Jha SK (2020) Application of machine learning on remote sensing data for sugarcane crop classification: a review. In: ICT analysis and applications: proceedings of ICT4SD 2019, vol 2, pp 539–555 Virnodkar SS, Pachghare VK, Patil VC, Jha SK (2020) Application of machine learning on remote sensing data for sugarcane crop classification: a review. In: ICT analysis and applications: proceedings of ICT4SD 2019, vol 2, pp 539–555
20.
Zurück zum Zitat Soltanikazemi M, Minaei S, Shafizadeh-Moghadam H, Mahdavian A (2022) Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: application of random forest and support vector regression. Comput Electron Agric 200:107130 Soltanikazemi M, Minaei S, Shafizadeh-Moghadam H, Mahdavian A (2022) Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: application of random forest and support vector regression. Comput Electron Agric 200:107130
22.
Zurück zum Zitat Saini R, Ghosh SK (2018) Exploring capabilities of Sentinel-2 for vegetation mapping using random forest. Int Arch Photogramm Remote Sens Spat Inf Sci 42:1499–1502CrossRef Saini R, Ghosh SK (2018) Exploring capabilities of Sentinel-2 for vegetation mapping using random forest. Int Arch Photogramm Remote Sens Spat Inf Sci 42:1499–1502CrossRef
Metadaten
Titel
Deep Learning Models for Classification of Remotely Sensed Data of Sugarcane
verfasst von
Mansi Kambli
Bhakti Palkar
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_1