Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.03.2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems | Ausgabe 9/2019

Neural Computing and Applications 9/2019

Deep learning of system reliability under multi-factor influence based on space fault tree

Zeitschrift:
Neural Computing and Applications > Ausgabe 9/2019
Autoren:
Tie-Jun Cui, Sha-sha Li

Abstract

For the fault tree analysis, a basic event probability is often complicated. The probability is not constant and even can be represented by function. In order to analyze the system reliability and related characteristics, we represent the probabilities of the basic events by functions. The variables of the function are n influencing factors on the basic events. We extend the top event probability from the constant value to n + 1-dimensional space considering n influencing factors, and the probability is n + 1th dimension. Further research the n + 1-dimensional space with related mathematical methods, and then, transform the system probability analysis into the problem of mathematic. The above ideas are the space fault tree (SFT). In SFT, component fault probability distribution replace basic event probability and system fault probability distribution replace top event probability. In this paper, we research the electrical system fault probability distribution and explain the related construction process. The main factors influencing the system are working temperature c and working time t. This paper constructs the three-dimensional fault probability distribution of the components and the system, and the probability importance and criticality importance of the components. With partial derivation of the system fault probability distribution by the c and t, we study the change trend of the fault probability. The optimal replacement schemes of components and the scheme considering the cost are obtained. The results show SFT is feasible and reasonable to analyze the fault probability of system under multi-factor influence and suitable for deep learning of the characteristics of the system reliability change.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network

Premium Partner

    Bildnachweise