Skip to main content
Erschienen in:

30.05.2022

Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision

verfasst von: Satti R. G. Reddy, G. P. Saradhi Varma, Rajya Lakshmi Davuluri

Erschienen in: Annals of Data Science | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Identifying and controlling diseases present in plants is very necessary and useful to have healthy growth in plants and to get products of good quality. In this paper, we proposed a novel model to detect whether a plant is diseased or healthy. This model was developed with a deep neural network (DNN) that extracts and evaluates features from plant leaf images. The proposed DNN model is trained on two popular datasets: New Plant Diseases (Augmented) and Rice Leaf, with 38 and 4 classes of plant leaf images, respectively. The model extracts twelve features from a leaf image. They are: total area, infected area, perimeter, x-centroid, y-centroid, mean intensity, equivalent diameter, entropy, eccentricity, energy, homogeneity, and dissimilarity. We observed that considering these many features for evaluation yield good results. The model has exhibited good performance on the two datasets. The model proposed is trained by setting different values for the following parameters: epoch, batch size, activation function, and dropout. When the model was applied to the validation dataset, it showed good performance. After considerable recreation, the proposed model achieved 96% to 99% classification accuracy for certain classes. When compared to traditional machine learning models, the proposed model achieves better accuracy. The proposed model is also tested for consistency and reliability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Shi Y (2022) Advances in Big Data Analytics: Theory, Algorithm and Practice, Springer, Singapore. Shi Y (2022) Advances in Big Data Analytics: Theory, Algorithm and Practice, Springer, Singapore.
6.
Zurück zum Zitat Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
7.
Zurück zum Zitat Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. SpringerCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. SpringerCrossRef
21.
Zurück zum Zitat Pukkela P, Borra S(2018) Machine learning based plant leaf disease detection and severity assessment techniques: state-of-the-art. Classif BioApps 199–226 Pukkela P, Borra S(2018) Machine learning based plant leaf disease detection and severity assessment techniques: state-of-the-art. Classif BioApps 199–226
Metadaten
Titel
Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision
verfasst von
Satti R. G. Reddy
G. P. Saradhi Varma
Rajya Lakshmi Davuluri
Publikationsdatum
30.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 1/2024
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00412-w

Premium Partner