Skip to main content
Erschienen in:

05.08.2024 | Original Article

Deep NURBS—admissible physics-informed neural networks

verfasst von: Hamed Saidaoui, Luis Espath, Raúl Tempone

Erschienen in: Engineering with Computers | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solutions for partial differential equations (PDEs) in case of arbitrary geometries while strongly enforcing Dirichlet boundary conditions. The proposed approach combines admissible NURBS parametrizations (admissible in the calculus of variations sense, that is, satisfying the boundary conditions) required to define the physical domain and the Dirichlet boundary conditions with a PINN solver. Therefore, the boundary conditions are automatically satisfied in this novel Deep NURBS framework. Furthermore, our sampling is carried out in the parametric space and mapped to the physical domain. This parametric sampling works as an importance sampling scheme since there is a concentration of points in regions where the geometry is more complex. We verified our new approach using two-dimensional elliptic PDEs when considering arbitrary geometries, including non-Lipschitz domains. Compared to the classical PINN solver, the Deep NURBS estimator has a remarkably high accuracy for all the studied problems. Moreover, a desirable accuracy was obtained for most of the studied PDEs using only one hidden layer of neural networks. This novel approach is considered to pave the way for more effective solutions for high-dimensional problems by allowing for a more realistic physics-informed statistical learning framework to solve PDEs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef
2.
Zurück zum Zitat Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97CrossRef Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97CrossRef
3.
Zurück zum Zitat Graves A, Mohamed A-R, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on acoustics, speech and signal processing, pp 6645–6649 Graves A, Mohamed A-R, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on acoustics, speech and signal processing, pp 6645–6649
4.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Proc. Advances in Neural Information Processing Systems, 25 Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Proc. Advances in Neural Information Processing Systems, 25
5.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015). Going deeper with convolutions. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015). Going deeper with convolutions. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 1–9
6.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef
7.
Zurück zum Zitat Carleo G, Troyer M (2017) Solving the quantum many-body problem with artificial neural networks. Science 355:602MathSciNetCrossRef Carleo G, Troyer M (2017) Solving the quantum many-body problem with artificial neural networks. Science 355:602MathSciNetCrossRef
8.
Zurück zum Zitat Carleo G, Nomura Y, Imada M (2018) Constructing exact representations of quantum many-body systems with deep neural networks. Nat Commun 9:5322CrossRef Carleo G, Nomura Y, Imada M (2018) Constructing exact representations of quantum many-body systems with deep neural networks. Nat Commun 9:5322CrossRef
9.
Zurück zum Zitat Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R, Carleo G (2018) Neural-network quantum state tomography. Nat Phys 14:447–450CrossRef Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R, Carleo G (2018) Neural-network quantum state tomography. Nat Phys 14:447–450CrossRef
10.
Zurück zum Zitat Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85CrossRef Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85CrossRef
11.
Zurück zum Zitat Snyder J, Rupp M, Hansen K, Müller K, Burke K (Jun2012) Finding density functionals with machine learning. Phys Rev Lett 108:253002CrossRef Snyder J, Rupp M, Hansen K, Müller K, Burke K (Jun2012) Finding density functionals with machine learning. Phys Rev Lett 108:253002CrossRef
12.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRef Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRef
13.
Zurück zum Zitat Berg J, Nyström K (2018) A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317:28–41CrossRef Berg J, Nyström K (2018) A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317:28–41CrossRef
14.
Zurück zum Zitat Weinan E, Bing Y (2018) The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun Math Stat 6:1–12MathSciNetCrossRef Weinan E, Bing Y (2018) The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun Math Stat 6:1–12MathSciNetCrossRef
15.
Zurück zum Zitat Sirignano J, Spiliopoulos K (2018) Dgm: a deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364MathSciNetCrossRef Sirignano J, Spiliopoulos K (2018) Dgm: a deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364MathSciNetCrossRef
16.
Zurück zum Zitat Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE (2021) Deepm &mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J Comput Phys 436:110296MathSciNetCrossRef Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE (2021) Deepm &mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J Comput Phys 436:110296MathSciNetCrossRef
17.
Zurück zum Zitat Kurth T, Treichler S, Romero J, Mudigonda M, Luehr N, Phillips E, Mahesh A, Matheson M, Deslippe J, Fatica M, Prabhat P, Houston M (2018) Exascale deep learning for climate analytics. In: SC18: International Conference for high performance computing, networking, storage and analysis, pp 649–660 Kurth T, Treichler S, Romero J, Mudigonda M, Luehr N, Phillips E, Mahesh A, Matheson M, Deslippe J, Fatica M, Prabhat P, Houston M (2018) Exascale deep learning for climate analytics. In: SC18: International Conference for high performance computing, networking, storage and analysis, pp 649–660
18.
Zurück zum Zitat Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790MathSciNetCrossRef Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790MathSciNetCrossRef
19.
Zurück zum Zitat Han J, Jentzen A, Weinan E (2018) Solving high-dimensional partial differential equations using deep learning. Proc Natl Acad Sci 115(34):8505–8510MathSciNetCrossRef Han J, Jentzen A, Weinan E (2018) Solving high-dimensional partial differential equations using deep learning. Proc Natl Acad Sci 115(34):8505–8510MathSciNetCrossRef
20.
Zurück zum Zitat Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef
21.
Zurück zum Zitat Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:477–508MathSciNetCrossRef Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:477–508MathSciNetCrossRef
22.
Zurück zum Zitat Mishra S, Molinaro R (2022) Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J Numer Anal Mishra S, Molinaro R (2022) Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J Numer Anal
23.
Zurück zum Zitat Fang Z (2021) A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Trans Neural Netw Learn Syst, pp 1–13 Fang Z (2021) A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Trans Neural Netw Learn Syst, pp 1–13
24.
Zurück zum Zitat Shin Y (2020) On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes. arXiv: Numer Anal Shin Y (2020) On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes. arXiv: Numer Anal
25.
Zurück zum Zitat Sukumar N, Srivastava A (2022) Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput Methods Appl Mech Eng 389:114333MathSciNetCrossRef Sukumar N, Srivastava A (2022) Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput Methods Appl Mech Eng 389:114333MathSciNetCrossRef
26.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp 265–283
29.
Zurück zum Zitat Bézier P (1972) Numerical control-mathematics and applications. Translated by AR Forrest Bézier P (1972) Numerical control-mathematics and applications. Translated by AR Forrest
30.
Zurück zum Zitat Hornik Kurt, Stinchcombe Maxwell, White Halbert (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRef Hornik Kurt, Stinchcombe Maxwell, White Halbert (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRef
31.
Zurück zum Zitat Hochreiter Sepp (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Internat J Uncertain Fuzziness Knowl-Based Syst 06(02):107–116CrossRef Hochreiter Sepp (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Internat J Uncertain Fuzziness Knowl-Based Syst 06(02):107–116CrossRef
32.
Zurück zum Zitat Austin Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, BerlinCrossRef Austin Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, BerlinCrossRef
33.
Zurück zum Zitat Asmussen S, Glynn PW (2007) Stochastic simulation: algorithms and analysis. SpringerCrossRef Asmussen S, Glynn PW (2007) Stochastic simulation: algorithms and analysis. SpringerCrossRef
34.
Zurück zum Zitat Rumelhart David E, Hinton Geoffrey E, Williams Ronald J (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRef Rumelhart David E, Hinton Geoffrey E, Williams Ronald J (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRef
35.
Zurück zum Zitat Wengert RE (Aug1964) A simple automatic derivative evaluation program. Commun ACM 7(8):463–464CrossRef Wengert RE (Aug1964) A simple automatic derivative evaluation program. Commun ACM 7(8):463–464CrossRef
37.
Metadaten
Titel
Deep NURBS—admissible physics-informed neural networks
verfasst von
Hamed Saidaoui
Luis Espath
Raúl Tempone
Publikationsdatum
05.08.2024
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 6/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-02040-9