Skip to main content
Erschienen in: Journal of Electronic Materials 6/2021

03.04.2021 | Original Research Article

Defect Density Control Using an Intrinsic Layer to Enhance Conversion Efficiency in an Optimized SnS Solar Cell

verfasst von: M. T. Islam, Atul Kumar, A. K. Thakur

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report a modification to the structure of an SnS/CdS solar cell to address the issue of its low experimental efficiency. The proposed structure primarily aims to control bulk recombination via passivation of the absorber bulk defect density and control of interfacial recombination via insertion of an intrinsic layer at the absorber–buffer interface. The device structure design is simulated with an SnS absorber, CdS buffer layer, and intrinsic layer with low hole density of ~ 1012 cm-3. The simulation approach matches the defect model to the experimental efficiency of the SnS/CdS structure to benchmark the parameters under varying conditions of bulk defect density, asymmetric carrier mobility, illumination, and temperature. The results confirm that the bulk recombination and fill factor losses are the major efficiency-limiting factors. Subsequent passivation of the bulk defect density in the absorber layer enhances JSC and the efficiency by controlling the bulk recombination. Insertion of an intrinsic layer at the SnS–CdS interface in the next level of simulation improves the fill factor. This approach enhances the fill factor to 62% from 54% for the benchmarked experimental cell. A substantial improvement is found in the open-circuit voltage (VOC) to 0.89 V from its experimental value of ~ 0.32 V. The two-tier optimization proposed in this work yields a fivefold higher efficiency of ~ 15.69% for the simulated optimal device structure when compared with the value of 3.16% reported experimentally and benchmarked initially herein to modify the device structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Lim, H. Suh, M. Suryawanshi, G.Y. Song, J.Y. Cho, J.H. Kim, J.H. Jang, C.-W. Jeon, A. Cho, S. Ahn, and J. Heo, Adv. Energy Mater. 8, 1702605 (2018).CrossRef D. Lim, H. Suh, M. Suryawanshi, G.Y. Song, J.Y. Cho, J.H. Kim, J.H. Jang, C.-W. Jeon, A. Cho, S. Ahn, and J. Heo, Adv. Energy Mater. 8, 1702605 (2018).CrossRef
2.
Zurück zum Zitat P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, and R.G. Gordon, Appl. Phys. Lett. 102, 053901 (2013).CrossRef P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, and R.G. Gordon, Appl. Phys. Lett. 102, 053901 (2013).CrossRef
3.
Zurück zum Zitat P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).CrossRef P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).CrossRef
4.
Zurück zum Zitat K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).CrossRef K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).CrossRef
5.
Zurück zum Zitat A. Wangperawong, P.-C. Hsu, Y. Yee, S.M. Herron, B.M. Clemens, Y. Cui, and S.F. Bent, Appl. Phys. Lett. 105, 173904 (2014).CrossRef A. Wangperawong, P.-C. Hsu, Y. Yee, S.M. Herron, B.M. Clemens, Y. Cui, and S.F. Bent, Appl. Phys. Lett. 105, 173904 (2014).CrossRef
6.
Zurück zum Zitat J. Yu Cho, S. Sinha, M. Gil-Gang, and J. Heo, J. Alloys Compd. 796, 160 (2019).CrossRef J. Yu Cho, S. Sinha, M. Gil-Gang, and J. Heo, J. Alloys Compd. 796, 160 (2019).CrossRef
7.
Zurück zum Zitat D. Lee, J. Yu Cho, H.-S. Yun, D.-K. Lee, T. Kim, K. Bang, Y.S. Lee, H.-Y. Kim, and J. Heo, J. Mater. Chem. A 7, 7186 (2019).CrossRef D. Lee, J. Yu Cho, H.-S. Yun, D.-K. Lee, T. Kim, K. Bang, Y.S. Lee, H.-Y. Kim, and J. Heo, J. Mater. Chem. A 7, 7186 (2019).CrossRef
8.
Zurück zum Zitat Y. Wang, H. Gong, B. Fan, and G. Hu, J. Phys. Chem. C 114, 3256 (2010).CrossRef Y. Wang, H. Gong, B. Fan, and G. Hu, J. Phys. Chem. C 114, 3256 (2010).CrossRef
9.
Zurück zum Zitat D. Avellaneda, M.T.S. Nair, and P.K. Nair, Thin Solid Films 517, 2500 (2009).CrossRef D. Avellaneda, M.T.S. Nair, and P.K. Nair, Thin Solid Films 517, 2500 (2009).CrossRef
10.
Zurück zum Zitat S. Gedi, V.R.M. Reddy, B. Pejjai, C.-W. Jeon, C. Park, and R.K.T. Reddy, Appl. Surf. Sci. 372, 116 (2016).CrossRef S. Gedi, V.R.M. Reddy, B. Pejjai, C.-W. Jeon, C. Park, and R.K.T. Reddy, Appl. Surf. Sci. 372, 116 (2016).CrossRef
11.
Zurück zum Zitat A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Alvarez, O. Gomez-Daza, M.T.S. Nair, and P.K. Nair, Phys. Status Solidi A 212, 2332 (2015).CrossRef A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Alvarez, O. Gomez-Daza, M.T.S. Nair, and P.K. Nair, Phys. Status Solidi A 212, 2332 (2015).CrossRef
12.
Zurück zum Zitat E. Barrios-Salgado, L.A. Rodrıguez-Guadarrama, M.L.R. Garcıa, L.G. Martınez, M.T.S. Nair, and P.K. Nair, Phys. Status Solidi A 214, 1700036 (2017).CrossRef E. Barrios-Salgado, L.A. Rodrıguez-Guadarrama, M.L.R. Garcıa, L.G. Martınez, M.T.S. Nair, and P.K. Nair, Phys. Status Solidi A 214, 1700036 (2017).CrossRef
13.
Zurück zum Zitat V.E. González-Flores, R.N. Mohan, R. Ballinas-Morales, M.T.S. Nair, and P.K. Nair, Thin Solid Films 672, 62 (2019).CrossRef V.E. González-Flores, R.N. Mohan, R. Ballinas-Morales, M.T.S. Nair, and P.K. Nair, Thin Solid Films 672, 62 (2019).CrossRef
14.
Zurück zum Zitat T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, and K. Higuchi, Appl. Phys. Lett. 102, 193901 (2013).CrossRef T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, and K. Higuchi, Appl. Phys. Lett. 102, 193901 (2013).CrossRef
15.
Zurück zum Zitat V.R.M. Reddy, H. Cho, S. Gedi, K.T.R. Reddy, W.K. Kim, and C. Park, J. Alloys Compd. 806, 410 (2019).CrossRef V.R.M. Reddy, H. Cho, S. Gedi, K.T.R. Reddy, W.K. Kim, and C. Park, J. Alloys Compd. 806, 410 (2019).CrossRef
16.
Zurück zum Zitat D. Ding, T. Rath, L. Lanzetta, J.M. Marin-Beloqui, and S.A. Haque, ACS Appl. Energy Mater. 1, 3042 (2018).CrossRef D. Ding, T. Rath, L. Lanzetta, J.M. Marin-Beloqui, and S.A. Haque, ACS Appl. Energy Mater. 1, 3042 (2018).CrossRef
17.
Zurück zum Zitat F. Jiang, H. Shen, W. Wang, and L. Zhang, J. Electrochem. Soc. 159, H235 (2012).CrossRef F. Jiang, H. Shen, W. Wang, and L. Zhang, J. Electrochem. Soc. 159, H235 (2012).CrossRef
18.
Zurück zum Zitat J.-Y. Kang, S.-M. Kwon, S.H. Yang, J.-H. Cha, J.A. Bae, and C.-W. Jeon, J. Alloys Compd. 711, 294 (2017).CrossRef J.-Y. Kang, S.-M. Kwon, S.H. Yang, J.-H. Cha, J.A. Bae, and C.-W. Jeon, J. Alloys Compd. 711, 294 (2017).CrossRef
19.
Zurück zum Zitat V.R.M. Reddy, S. Gedi, C. Park, R.W. Miles, and K.T. Ramakrishna-Reddy, Curr. Appl. Phys. 15, 588 (2015).CrossRef V.R.M. Reddy, S. Gedi, C. Park, R.W. Miles, and K.T. Ramakrishna-Reddy, Curr. Appl. Phys. 15, 588 (2015).CrossRef
20.
Zurück zum Zitat G. R. Gopinath and K. T. R. Reddy, ISRN Condensed Matter Physics, Article ID 140230, 6 pages, (2013). G. R. Gopinath and K. T. R. Reddy, ISRN Condensed Matter Physics, Article ID 140230, 6 pages, (2013).
21.
Zurück zum Zitat A. Schneikart, H.-J. Schimper, A. Klein, and W. Jaegermann, J. Phys. D: Appl. Phys. 46, 305109 (2013).CrossRef A. Schneikart, H.-J. Schimper, A. Klein, and W. Jaegermann, J. Phys. D: Appl. Phys. 46, 305109 (2013).CrossRef
22.
Zurück zum Zitat Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys. 15, 897 (2015).CrossRef Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys. 15, 897 (2015).CrossRef
23.
Zurück zum Zitat V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, and T. Buonassisi, Adv. Mater. 26, 7488 (2014).CrossRef V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, and T. Buonassisi, Adv. Mater. 26, 7488 (2014).CrossRef
24.
25.
Zurück zum Zitat M. Gunasekaran, and M. Ichimura, Sol. Energy Mater. Sol. Cells 91, 774 (2007).CrossRef M. Gunasekaran, and M. Ichimura, Sol. Energy Mater. Sol. Cells 91, 774 (2007).CrossRef
26.
27.
Zurück zum Zitat H.H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, and R.G. Gordon, Prog. Photovolt: Res. Appl. 23, 901 (2015).CrossRef H.H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, and R.G. Gordon, Prog. Photovolt: Res. Appl. 23, 901 (2015).CrossRef
28.
Zurück zum Zitat S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Lazenka, and K. Bente, Thin Solid Films 520, 5807 (2012).CrossRef S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Lazenka, and K. Bente, Thin Solid Films 520, 5807 (2012).CrossRef
29.
Zurück zum Zitat M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000).CrossRef M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000).CrossRef
30.
Zurück zum Zitat M. Burgelman, K. Decock, S. Khelifi, and A. Abass, Thin Solid Films 535, 296 (2013).CrossRef M. Burgelman, K. Decock, S. Khelifi, and A. Abass, Thin Solid Films 535, 296 (2013).CrossRef
31.
Zurück zum Zitat F. Baig, Y.H. Khattak, S. Ullah, B.M. Soucase, S. Beg, and H. Ullah, Appl. Phys. A 124, 471 (2018).CrossRef F. Baig, Y.H. Khattak, S. Ullah, B.M. Soucase, S. Beg, and H. Ullah, Appl. Phys. A 124, 471 (2018).CrossRef
32.
33.
Zurück zum Zitat A. R. S. Kandada, V. D’Innocenzo, G. Lanzani, D. Petrozza, Royal Society of Chemistry. A. R. S. Kandada, V. D’Innocenzo, G. Lanzani, D. Petrozza, Royal Society of Chemistry.
34.
Zurück zum Zitat P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon, Adv. Energy Mater. 1, 1116 (2011).CrossRef P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon, Adv. Energy Mater. 1, 1116 (2011).CrossRef
37.
Zurück zum Zitat D. T. Cotfas, P. A. Cotfas, and O. M. Machidon, International Journal of Photo energy, 5945602, (2018). D. T. Cotfas, P. A. Cotfas, and O. M. Machidon, International Journal of Photo energy, 5945602, (2018).
38.
Zurück zum Zitat M.-S. Kim, B.-G. Kim, and J. Kim, ACS Appl. Mater. Interfaces 1, 1264 (2009).CrossRef M.-S. Kim, B.-G. Kim, and J. Kim, ACS Appl. Mater. Interfaces 1, 1264 (2009).CrossRef
39.
Zurück zum Zitat L. Wu, H. Zang, Y.C. Hsiao, X. Zhang, and B. Hu, Appl. Phys. Lett. 104, 153903 (2014).CrossRef L. Wu, H. Zang, Y.C. Hsiao, X. Zhang, and B. Hu, Appl. Phys. Lett. 104, 153903 (2014).CrossRef
41.
Zurück zum Zitat S. Ouédraogo, F. Zougmoré, and J.M.B. Ndjaka, J. Phys. Chem. Solids 75, 688 (2014).CrossRef S. Ouédraogo, F. Zougmoré, and J.M.B. Ndjaka, J. Phys. Chem. Solids 75, 688 (2014).CrossRef
42.
Zurück zum Zitat N.M. Hung, C.V. Nguyen, V.K. Arepalli, J. Kim, N.D. Chinh, T.D. Nguyen, D.B. Seo, E.T. Kim, C. Kim, and D. Kim, Sensors 20, 5701 (2020).CrossRef N.M. Hung, C.V. Nguyen, V.K. Arepalli, J. Kim, N.D. Chinh, T.D. Nguyen, D.B. Seo, E.T. Kim, C. Kim, and D. Kim, Sensors 20, 5701 (2020).CrossRef
43.
44.
45.
Zurück zum Zitat T. Minemoto, and M. Murata, Sol. Energy Mater. Sol. Cells 133, 8 (2015).CrossRef T. Minemoto, and M. Murata, Sol. Energy Mater. Sol. Cells 133, 8 (2015).CrossRef
47.
Zurück zum Zitat S.F. Wang, W. Wang, W.K. Fong, Y. Yu, and C. Surya, Sci. Rep. 7, 39704 (2017).CrossRef S.F. Wang, W. Wang, W.K. Fong, Y. Yu, and C. Surya, Sci. Rep. 7, 39704 (2017).CrossRef
48.
Zurück zum Zitat L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, and A. Walsh, Chem. Mater. 25, 4908 (2013).CrossRef L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, and A. Walsh, Chem. Mater. 25, 4908 (2013).CrossRef
49.
Zurück zum Zitat D. Lee, J.Y. Cho, H.S. Yun, D.K. Lee, T. Kim, K. Bang, Y.S. Lee, H.Y. Kim, and J. Heo, J. Mater. Chem. A 7, 7186 (2019).CrossRef D. Lee, J.Y. Cho, H.S. Yun, D.K. Lee, T. Kim, K. Bang, Y.S. Lee, H.Y. Kim, and J. Heo, J. Mater. Chem. A 7, 7186 (2019).CrossRef
Metadaten
Titel
Defect Density Control Using an Intrinsic Layer to Enhance Conversion Efficiency in an Optimized SnS Solar Cell
verfasst von
M. T. Islam
Atul Kumar
A. K. Thakur
Publikationsdatum
03.04.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08881-0

Weitere Artikel der Ausgabe 6/2021

Journal of Electronic Materials 6/2021 Zur Ausgabe

Neuer Inhalt