Skip to main content

2025 | OriginalPaper | Buchkapitel

DefectClassifierX: A Cross-Platform Automated Pattern Classification System for Wafer Defects

verfasst von : Amjad Rattrout, Hussein Younis, Ahmad Bsiesy

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The manufacturing of semiconductor wafers is a complex process that is prone to defects. This paper introduces DefectClassifierX, an automated defects pattern classification system that uses a convolutional neural network model based on the ResNet-152 architecture. The main objective of the approach is to improve defect classification in semiconductor manufacturing, which precisely classifies wafer defect patterns. To validate the approach taken, several experiments were performed using a dataset named “WM-300K+ wafer map [single and mixed]”. For single and mixed, the dataset contained 36 different defect patterns. The performance measures extracted from the developed model demonstrated truly outstanding accuracy with precision, recall, and f1 score of 0.9. These results reflect an exceptional average classification accuracy of 97.74% in both single and mixed defect types and outperforms previous studies in wafer defect pattern classification. It is expected to offer a giant leap in increasing the efficiency and effectiveness of wafer defect analysis in semiconductor manufacturing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat Deng, L., Yu, D.: Deep learning: methods and applications foundations and trends R in signal processing. Sig. Process. 7, 2013 (2013) Deng, L., Yu, D.: Deep learning: methods and applications foundations and trends R in signal processing. Sig. Process. 7, 2013 (2013)
10.
Zurück zum Zitat Doss, R., Ramakrishnan, J., Kavitha, S., Ramkumar, S., Charlyn Pushpa Latha, G., Ramaswamy, K.: Classification of silicon (Si) wafer material defects in semiconductor choosers using a deep learning ShuffleNet-v2-CNN model. Adv. Mater. Sci. Eng. 2022 (2022). https://doi.org/10.1155/2022/1829792 Doss, R., Ramakrishnan, J., Kavitha, S., Ramkumar, S., Charlyn Pushpa Latha, G., Ramaswamy, K.: Classification of silicon (Si) wafer material defects in semiconductor choosers using a deep learning ShuffleNet-v2-CNN model. Adv. Mater. Sci. Eng. 2022 (2022). https://​doi.​org/​10.​1155/​2022/​1829792
15.
Zurück zum Zitat Ghimire, D.: Comparative study on Python web frameworks: Flask and Django. Metropolia University of Applied Sciences (2020) Ghimire, D.: Comparative study on Python web frameworks: Flask and Django. Metropolia University of Applied Sciences (2020)
17.
Zurück zum Zitat Younis, H., Rattrout, A., Younis, M.: Deep neural networks for efficient classification of single and mixed defect patterns in silicon wafer manufacturing. J. Theor. Appl. Inf. Technol. 102(3) (2024) Younis, H., Rattrout, A., Younis, M.: Deep neural networks for efficient classification of single and mixed defect patterns in silicon wafer manufacturing. J. Theor. Appl. Inf. Technol. 102(3) (2024)
Metadaten
Titel
DefectClassifierX: A Cross-Platform Automated Pattern Classification System for Wafer Defects
verfasst von
Amjad Rattrout
Hussein Younis
Ahmad Bsiesy
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_29