Skip to main content
Erschienen in: Artificial Life and Robotics 1/2020

05.10.2019 | Original Article

Deformable tensegrity structure underwater robot with a transformation mechanism

verfasst von: Mizuho Shibata, Norimitsu Sakagami

Erschienen in: Artificial Life and Robotics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underwater robots for inspecting marine structures such as breakwaters, pipes and quay walls require mobility not only for self-transport but for rotation during inspection. To facilitate rotation mobility, we have proposed a portable, lightweight underwater robot whose performance to translate and rotate is achieved by it altering its shape. The shape is that of a three-strut tensegrity structure of three pipes connected with rubber strings. This manuscript describes a transformation mechanism for an underwater robot with a deformable tensegrity structure. The transformation mechanism includes a winding unit with a planetary gear. We show that the transformation mechanism has a self-locking feature by selecting a high gear ratio of the winding unit. We also evaluate the fluid characteristics of the robot with the transformation mechanism in several experiments in a circulating water tank to investigate the effect of the transformation mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yoerger D, Slotine J (1985) Robust trajectory control of underwater vehicles. IEEE J Ocean Eng 10(4):462–470CrossRef Yoerger D, Slotine J (1985) Robust trajectory control of underwater vehicles. IEEE J Ocean Eng 10(4):462–470CrossRef
2.
Zurück zum Zitat Cui J, Zhao L, Yu J, Lin C, Ma Y (2019) Neural network-based adaptive finite-time consensus tracking control for multiple autonomous underwater vehicles. IEEE Access 7:33064–33074CrossRef Cui J, Zhao L, Yu J, Lin C, Ma Y (2019) Neural network-based adaptive finite-time consensus tracking control for multiple autonomous underwater vehicles. IEEE Access 7:33064–33074CrossRef
3.
Zurück zum Zitat Takagawa S, Takahashi K, Sano T, Kyo M, Mori Y, Nakanishi T (1989) 6,500m deep manned research submersible Shinkai 6500 system. In: Proceeding of OCEANS, pp 741–746 Takagawa S, Takahashi K, Sano T, Kyo M, Mori Y, Nakanishi T (1989) 6,500m deep manned research submersible Shinkai 6500 system. In: Proceeding of OCEANS, pp 741–746
4.
Zurück zum Zitat Matsuda T, Maki T, Sakamaki T (2019) Accurate and efficient seafloor observations with multiple autonomous underwater vehicles: theory and experiments in a hydrothermal vent field. IEEE Robot Autom Lett 4:2333–2339CrossRef Matsuda T, Maki T, Sakamaki T (2019) Accurate and efficient seafloor observations with multiple autonomous underwater vehicles: theory and experiments in a hydrothermal vent field. IEEE Robot Autom Lett 4:2333–2339CrossRef
5.
Zurück zum Zitat Tarn TJ, Shoults GA, Yang SP (1996) A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton Robots 3:269–283CrossRef Tarn TJ, Shoults GA, Yang SP (1996) A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton Robots 3:269–283CrossRef
6.
Zurück zum Zitat Leabourne KN, Rock SM (1998) Model development of an underwater manipulator for coordinated arm-vehicle control. In: Proceedings of OCEANS ’98 conference, pp 941–946 Leabourne KN, Rock SM (1998) Model development of an underwater manipulator for coordinated arm-vehicle control. In: Proceedings of OCEANS ’98 conference, pp 941–946
7.
Zurück zum Zitat Xu F, Wang H, Wang J, Au KWS, Chen W (2019) Underwater dynamic visual servoing for a soft robot arm with online distortion correction. IEEE/ASME Trans Mechatron 24:979–989CrossRef Xu F, Wang H, Wang J, Au KWS, Chen W (2019) Underwater dynamic visual servoing for a soft robot arm with online distortion correction. IEEE/ASME Trans Mechatron 24:979–989CrossRef
8.
Zurück zum Zitat Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford
9.
Zurück zum Zitat Togawa K, Mori M, Hirose S (2000) Study on Threedimensional Active Cord Mechanism: development of ACMR2. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems, pp 2242–2247 Togawa K, Mori M, Hirose S (2000) Study on Threedimensional Active Cord Mechanism: development of ACMR2. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems, pp 2242–2247
10.
Zurück zum Zitat Yamamoto I, Terada Y (2003) Robotic fish and its technology. In: Proceedings of the SICE annual conference Yamamoto I, Terada Y (2003) Robotic fish and its technology. In: Proceedings of the SICE annual conference
11.
Zurück zum Zitat Chunlin Z, Low KH (2012) Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans Mechatron 17(1):25–35CrossRef Chunlin Z, Low KH (2012) Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans Mechatron 17(1):25–35CrossRef
12.
Zurück zum Zitat Wang H, Wang D, Wang T, Zhang Y, Gu N (2019) Adaptive cooperative diving of saucer-type underwater gliders subject to model uncertainties and input constraints. IEEE Access 7:60042–60054CrossRef Wang H, Wang D, Wang T, Zhang Y, Gu N (2019) Adaptive cooperative diving of saucer-type underwater gliders subject to model uncertainties and input constraints. IEEE Access 7:60042–60054CrossRef
13.
Zurück zum Zitat Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Ballard JW, Chiodi AM (2001) Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Ocean Eng 26(4):424–436CrossRef Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Ballard JW, Chiodi AM (2001) Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Ocean Eng 26(4):424–436CrossRef
14.
Zurück zum Zitat Sherman J, Davis RE, Owens WB, Valdes J (2001) The autonomous underwater glider “Spray”. IEEE J Ocean Eng 26(4):437–446CrossRef Sherman J, Davis RE, Owens WB, Valdes J (2001) The autonomous underwater glider “Spray”. IEEE J Ocean Eng 26(4):437–446CrossRef
15.
Zurück zum Zitat Doniec M, Vasilescu I, Detweiler C, Rus D (2010) Complete SE3 underwater robot control with arbitrary thruster configurations. In: Proceedings of 2010 IEEE international conference on robotics and automation, pp 5295–5301 Doniec M, Vasilescu I, Detweiler C, Rus D (2010) Complete SE3 underwater robot control with arbitrary thruster configurations. In: Proceedings of 2010 IEEE international conference on robotics and automation, pp 5295–5301
16.
Zurück zum Zitat Shibata M, Miyamura T, Sakagami N, Miyata S (2013) Use of a deformable tensegrity structure as an underwater robot body. J Robot Mechatron 25(5):804–811CrossRef Shibata M, Miyamura T, Sakagami N, Miyata S (2013) Use of a deformable tensegrity structure as an underwater robot body. J Robot Mechatron 25(5):804–811CrossRef
17.
Zurück zum Zitat Shibata M, Sakagami N (2014) A portable underwater robot with tensegrity body composed of thruster units. In: Mobile service robotics (CLAWAR2014), pp 503–510 Shibata M, Sakagami N (2014) A portable underwater robot with tensegrity body composed of thruster units. In: Mobile service robotics (CLAWAR2014), pp 503–510
19.
Zurück zum Zitat Paul C, Valero-Cuevas FJ, Lipson H (2006) Design and control of tensegrity robots for locomotion. IEEE Trans Robot 22(5):944–957CrossRef Paul C, Valero-Cuevas FJ, Lipson H (2006) Design and control of tensegrity robots for locomotion. IEEE Trans Robot 22(5):944–957CrossRef
20.
Zurück zum Zitat Fadeyev D, Zhakatayev A, Kuzdeuov A, Varol HA (2019) Generalized dynamics of stacked tensegrity manipulators. IEEE Access 7:63472–63484CrossRef Fadeyev D, Zhakatayev A, Kuzdeuov A, Varol HA (2019) Generalized dynamics of stacked tensegrity manipulators. IEEE Access 7:63472–63484CrossRef
21.
Zurück zum Zitat Du W, Ma S, Li B, Wang M, Hirai S (2016) Force analytic method for rolling gaits of tensegrity robots. IEEE/ASME Trans Mechatron 21:2249–2259CrossRef Du W, Ma S, Li B, Wang M, Hirai S (2016) Force analytic method for rolling gaits of tensegrity robots. IEEE/ASME Trans Mechatron 21:2249–2259CrossRef
22.
Zurück zum Zitat Bliss T, Iwasaki T, Smith HB (2013) Central pattern generator control of a tensegrity swimmer. IEEE/ASME Trans Mechatron 18:586–597CrossRef Bliss T, Iwasaki T, Smith HB (2013) Central pattern generator control of a tensegrity swimmer. IEEE/ASME Trans Mechatron 18:586–597CrossRef
23.
Zurück zum Zitat Shibata M, Saijyo F, Hirai S (2009) Crawling by body deformation of tensegrity structure robots. In: IEEE international conference on robotics and automation, pp 4375–4380 Shibata M, Saijyo F, Hirai S (2009) Crawling by body deformation of tensegrity structure robots. In: IEEE international conference on robotics and automation, pp 4375–4380
Metadaten
Titel
Deformable tensegrity structure underwater robot with a transformation mechanism
verfasst von
Mizuho Shibata
Norimitsu Sakagami
Publikationsdatum
05.10.2019
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 1/2020
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-019-00563-9

Weitere Artikel der Ausgabe 1/2020

Artificial Life and Robotics 1/2020 Zur Ausgabe

Neuer Inhalt