Skip to main content
Erschienen in: Applied Composite Materials 1/2018

08.05.2017

Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

verfasst von: Junxia Wang, Changlin Cao, Dingshan Yu, Xudong Chen

Erschienen in: Applied Composite Materials | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Guo, C., Sun, F., Ling, R., Yao, J., Zhang, Z., Zhang, G.: Crystallization and stress relaxation behaviors of UHMWPE/CNT fibers. J. Vinyl. Addit. Technol. 37, 41–47 (2016) Guo, C., Sun, F., Ling, R., Yao, J., Zhang, Z., Zhang, G.: Crystallization and stress relaxation behaviors of UHMWPE/CNT fibers. J. Vinyl. Addit. Technol. 37, 41–47 (2016)
2.
Zurück zum Zitat Fang, J., Dong, L., Dong, W., Chiang, S.W., Makimattila, S., Du, H., Li, J., Kang, F.: Freeze-drying method prepared UHMWPE/CNTs composites with optimized micromorphologies and improved tribological performance. J. Appl. Polym. Sci. 132(18), 41885–41892 (2015)CrossRef Fang, J., Dong, L., Dong, W., Chiang, S.W., Makimattila, S., Du, H., Li, J., Kang, F.: Freeze-drying method prepared UHMWPE/CNTs composites with optimized micromorphologies and improved tribological performance. J. Appl. Polym. Sci. 132(18), 41885–41892 (2015)CrossRef
3.
Zurück zum Zitat Al-saleh, M.H., Abdul-jawad, S., El-ghanem, H.M.: Electrical and dielectric behaviors of dry-mixed CNTs/UHMWPE nanocomposites. High Perform. Polym. 26(2), 205–211 (2014)CrossRef Al-saleh, M.H., Abdul-jawad, S., El-ghanem, H.M.: Electrical and dielectric behaviors of dry-mixed CNTs/UHMWPE nanocomposites. High Perform. Polym. 26(2), 205–211 (2014)CrossRef
4.
Zurück zum Zitat Ruan, F., Bao, L.: Mechanical enhancement of UHMWPE fibers by coating with carbon nanoparticles. Fibers Polym. 15(4), 723–728 (2014)CrossRef Ruan, F., Bao, L.: Mechanical enhancement of UHMWPE fibers by coating with carbon nanoparticles. Fibers Polym. 15(4), 723–728 (2014)CrossRef
5.
Zurück zum Zitat Liu, X., Zhang, S., Xu, X.J., Zhang, Z., Zhou, L., Zhang, G.: Study on the creep and recovery behaviors of UHMWPE/CNTs composite fiber. Fibers Polym. 14(10), 1635–1640 (2013)CrossRef Liu, X., Zhang, S., Xu, X.J., Zhang, Z., Zhou, L., Zhang, G.: Study on the creep and recovery behaviors of UHMWPE/CNTs composite fiber. Fibers Polym. 14(10), 1635–1640 (2013)CrossRef
6.
Zurück zum Zitat Hao, X.Y., Chien, A.T., Hua, X.Y., Lu, J., Liu, Y.D.: Dispersion of pristine CNTs in UHMWPE solution to prepare CNT/UHMWPE composite fibre. Mater. Res. Innov. 17, 123–125 (2014)CrossRef Hao, X.Y., Chien, A.T., Hua, X.Y., Lu, J., Liu, Y.D.: Dispersion of pristine CNTs in UHMWPE solution to prepare CNT/UHMWPE composite fibre. Mater. Res. Innov. 17, 123–125 (2014)CrossRef
7.
Zurück zum Zitat Wang, J.X., Yan, S.L., Bao, R., Yang, K.L., Feng, Z.J.: Facile fabrication of multi-walled carbon nanotubes and its enhancement on thermally conductive adhesive applied in heat dissipation devices. Mater. Des. 51(5), 598–604 (2013)CrossRef Wang, J.X., Yan, S.L., Bao, R., Yang, K.L., Feng, Z.J.: Facile fabrication of multi-walled carbon nanotubes and its enhancement on thermally conductive adhesive applied in heat dissipation devices. Mater. Des. 51(5), 598–604 (2013)CrossRef
8.
Zurück zum Zitat Wang, J.X., Yan, S.L., Xie, B.P., Bao, R., He, Y.B.: Dynamic analysis and mechanical behavior of thermally conductive adhesive reinforced with amine-grafted multiwalled carbon nanotubes. Polym. Compos. 35(5), 964–968 (2014)CrossRef Wang, J.X., Yan, S.L., Xie, B.P., Bao, R., He, Y.B.: Dynamic analysis and mechanical behavior of thermally conductive adhesive reinforced with amine-grafted multiwalled carbon nanotubes. Polym. Compos. 35(5), 964–968 (2014)CrossRef
9.
Zurück zum Zitat Wang, J.X., Yan, S.L., Yu, D.S.: Material based structure design: numerical analysis thermodynamic response of thermal pyrolytic graphite/Al sandwich composites. Appl. Compos. Mater. 23, 1167–1176 (2016)CrossRef Wang, J.X., Yan, S.L., Yu, D.S.: Material based structure design: numerical analysis thermodynamic response of thermal pyrolytic graphite/Al sandwich composites. Appl. Compos. Mater. 23, 1167–1176 (2016)CrossRef
10.
Zurück zum Zitat Tokihisa, M., Yakemoto, K., Sakai, T., Utracki, L.A., Sepehr, M., Li, J., Simard, Y.: Extensional flow mixer for polymer nanocomposites. Polym. Eng. Sci. 46(8), 1040–1050 (2006)CrossRef Tokihisa, M., Yakemoto, K., Sakai, T., Utracki, L.A., Sepehr, M., Li, J., Simard, Y.: Extensional flow mixer for polymer nanocomposites. Polym. Eng. Sci. 46(8), 1040–1050 (2006)CrossRef
11.
Zurück zum Zitat Muke, S., Ivanov, I., Kao, N., Bhattacharya, S.: The melt extensibility of polypropylene. Polym. Int. 50(5), 515–523 (2001)CrossRef Muke, S., Ivanov, I., Kao, N., Bhattacharya, S.: The melt extensibility of polypropylene. Polym. Int. 50(5), 515–523 (2001)CrossRef
12.
Zurück zum Zitat Sampers, J., Leblans, P.R.: An experimental and theoretical study of the effect of the elongational history on the dynamics of isothermal melt spinning. J. Non-Newtonian Fluid Mech. 30(2–3), 325–342 (1988)CrossRef Sampers, J., Leblans, P.R.: An experimental and theoretical study of the effect of the elongational history on the dynamics of isothermal melt spinning. J. Non-Newtonian Fluid Mech. 30(2–3), 325–342 (1988)CrossRef
13.
Zurück zum Zitat González-nuñez, R., Arellano, M., Moscoso, F.J., González-romero, V.M., Favis, B.D.: Determination of a limiting dispersed phase concentration for coalescence in PA6/HDPE blends under extensional flow. Polymer. 42(12), 5485–5489 (2001)CrossRef González-nuñez, R., Arellano, M., Moscoso, F.J., González-romero, V.M., Favis, B.D.: Determination of a limiting dispersed phase concentration for coalescence in PA6/HDPE blends under extensional flow. Polymer. 42(12), 5485–5489 (2001)CrossRef
14.
Zurück zum Zitat Ajji, A., Sammut, P., Huneault, M.A.: Elongational rheology of LLDPE/LDPE blends. J. Appl. Polym. Sci. 88(14), 3070–3077 (2010)CrossRef Ajji, A., Sammut, P., Huneault, M.A.: Elongational rheology of LLDPE/LDPE blends. J. Appl. Polym. Sci. 88(14), 3070–3077 (2010)CrossRef
15.
Zurück zum Zitat Garcia-rejon, A., Meddad, A., Turcott, E., Carmel, M.: Extrusion blow molding of long fiber reinforced polyolefins. Polym. Eng. Sci. 42(2), 346–364 (2002)CrossRef Garcia-rejon, A., Meddad, A., Turcott, E., Carmel, M.: Extrusion blow molding of long fiber reinforced polyolefins. Polym. Eng. Sci. 42(2), 346–364 (2002)CrossRef
16.
Zurück zum Zitat Li, Q., Yang, Q., Huang, Y.J., Chen, G.L., Lv, Y.D.: Effect of compatibilizer content on the shear and extensional rheology of polypropylene/clay nanocomposites. J Macromolecular Sci. Part B. 51(9), 1776–1793 (2012)CrossRef Li, Q., Yang, Q., Huang, Y.J., Chen, G.L., Lv, Y.D.: Effect of compatibilizer content on the shear and extensional rheology of polypropylene/clay nanocomposites. J Macromolecular Sci. Part B. 51(9), 1776–1793 (2012)CrossRef
17.
Zurück zum Zitat Niu, B., Chen, J.B., Chen, J., Xu, J., Zhong, G.J., Li, Z.M.: Crystallization of linear low density polyethylene on in SITU oriented isotactic polypropylene substrate manipulated by extensional flow field. CrystEngComm. 18(1), 77–91 (2015)CrossRef Niu, B., Chen, J.B., Chen, J., Xu, J., Zhong, G.J., Li, Z.M.: Crystallization of linear low density polyethylene on in SITU oriented isotactic polypropylene substrate manipulated by extensional flow field. CrystEngComm. 18(1), 77–91 (2015)CrossRef
18.
Zurück zum Zitat Yin, X.C., Li, S., He, G.J., Zhang, G.Z., Qu, J.P.: Experimental study of the extrusion characteristic of a Vane extruder based on extensional flow. Adv. Polym. Technol. 35(2), 215–220 (2015) Yin, X.C., Li, S., He, G.J., Zhang, G.Z., Qu, J.P.: Experimental study of the extrusion characteristic of a Vane extruder based on extensional flow. Adv. Polym. Technol. 35(2), 215–220 (2015)
19.
Zurück zum Zitat Qu, J.P., Chen, H.Z., Liu, S.R., Tan, B., Liu, L.M., Yin, X.C., Liu, Q.J., Guo, R.B.: Morphology study of immiscible polymer blends in a vane extruder. J. Appl. Polym. Sci. 128(6), 3576–3585 (2013)CrossRef Qu, J.P., Chen, H.Z., Liu, S.R., Tan, B., Liu, L.M., Yin, X.C., Liu, Q.J., Guo, R.B.: Morphology study of immiscible polymer blends in a vane extruder. J. Appl. Polym. Sci. 128(6), 3576–3585 (2013)CrossRef
20.
Zurück zum Zitat Qu, J.P., Zhao, X.Q., Li, J.B., Cai, S.Q.: Power consumption in the compacting process of polymer particulate solids in a vane extruder. J. Appl. Polym. Sci. 127(5), 3923–3932 (2013)CrossRef Qu, J.P., Zhao, X.Q., Li, J.B., Cai, S.Q.: Power consumption in the compacting process of polymer particulate solids in a vane extruder. J. Appl. Polym. Sci. 127(5), 3923–3932 (2013)CrossRef
21.
Zurück zum Zitat Maniak, I., Melnikov, B., Semenov, A.S., Saikin, S.: Experimental investigation and finite element simulation of fracture process of polymer composite material with short carbon fibers. Appl. Mech. Mater. 725(11), 943–948 (2015)CrossRef Maniak, I., Melnikov, B., Semenov, A.S., Saikin, S.: Experimental investigation and finite element simulation of fracture process of polymer composite material with short carbon fibers. Appl. Mech. Mater. 725(11), 943–948 (2015)CrossRef
22.
Zurück zum Zitat Abadi, M.T.: Finite element analysis for thermoforming process of continuous fiber reinforced thermoplastic composites. Polym. Compos. 30(2), 138–146 (2009)CrossRef Abadi, M.T.: Finite element analysis for thermoforming process of continuous fiber reinforced thermoplastic composites. Polym. Compos. 30(2), 138–146 (2009)CrossRef
23.
Zurück zum Zitat Zhang, Y.F., Zhao, Y.H., Bai, S.L., Yuan, X.: Numerical simulation of thermal conductivity of graphene filled polymer composites. Compos. Part B. 106, 324–331 (2016)CrossRef Zhang, Y.F., Zhao, Y.H., Bai, S.L., Yuan, X.: Numerical simulation of thermal conductivity of graphene filled polymer composites. Compos. Part B. 106, 324–331 (2016)CrossRef
24.
Zurück zum Zitat Ghassemieh, E., Nassehi, V.: Prediction of failure and fracture mechanisms of polymeric composites using finite element analysis. Polym. Compos. 22(22), 542–554 (2010) Ghassemieh, E., Nassehi, V.: Prediction of failure and fracture mechanisms of polymeric composites using finite element analysis. Polym. Compos. 22(22), 542–554 (2010)
25.
Zurück zum Zitat Wang, Y., Cheng, R., Liang, L., Wang, Y.: Study on the preparation and characterization of ultra-high molecular weight polyethylene–carbon nanotubes composite fiber. Compos. Sci. Technol. 65(5), 793–797 (2005)CrossRef Wang, Y., Cheng, R., Liang, L., Wang, Y.: Study on the preparation and characterization of ultra-high molecular weight polyethylene–carbon nanotubes composite fiber. Compos. Sci. Technol. 65(5), 793–797 (2005)CrossRef
26.
Zurück zum Zitat Xue, Y., Wu, W., Jacobs, O., Schädel, B.: Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym. Test. 25(2), 221–229 (2006)CrossRef Xue, Y., Wu, W., Jacobs, O., Schädel, B.: Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym. Test. 25(2), 221–229 (2006)CrossRef
27.
Zurück zum Zitat Ruan, S., Gao, P., Yu, T.X.: Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer. 47(5), 1604–1611 (2006)CrossRef Ruan, S., Gao, P., Yu, T.X.: Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer. 47(5), 1604–1611 (2006)CrossRef
Metadaten
Titel
Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow
verfasst von
Junxia Wang
Changlin Cao
Dingshan Yu
Xudong Chen
Publikationsdatum
08.05.2017
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 1/2018
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-017-9606-8

Weitere Artikel der Ausgabe 1/2018

Applied Composite Materials 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.