Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2020

01.08.2020

Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes Under Drop-Weight Impact Testing

verfasst von: M. Salehi, S. M. H. Mirbagheri, A. Jafari Ramiani

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article investigates the low-velocity impact behavior and crashworthiness of metallic foams and functionally graded foam-filled tubes (FGFTs). Closed cell Zn, Al, and A356 alloy foams fabricated by the direct foaming method are used as axial grading fillers for the manufacture of single-, double-, triple-, and quad-layer structures. The microstructural examinations are implemented by an optical microscope and a field emission scanning electron microscope. The drop-weight impact testing is performed on the metallic foams and FGFTs with a free fall velocity of 5.42 m/s and energy of 294.3 J. The influence of material, density, number, and arrangement of foam layers on the deformation behavior and specific energy absorption (SEA) is studied. The results indicate the multiple crushing response and stepwise increment of stress through distinct plateau regions in the FGFTs. The A356 foam with low density and great inherent strength provides the highest SEA, whereas high density and brittle matrix of the Zn foam deteriorate the SEA of FGFTs. The maximum SEA of 261 J/(g cm−3) is achieved in the double-layer A356-Al foam-filled tube. The best crashworthiness is fulfilled in multilayer A356-Al structures owing to a combination of high SEA and low peak crushing strength (σpeak).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 1.Z. Li, R. Chen, and F. Lu: Thin Walled Struct., 2018, vol. 124, pp. 343-49. 1.Z. Li, R. Chen, and F. Lu: Thin Walled Struct., 2018, vol. 124, pp. 343-49.
2.
Zurück zum Zitat 2.I. Duarte, L.K. Opara, and M. Vesenjak: Compos. Struct., 2018, vol. 192, pp. 184-92. 2.I. Duarte, L.K. Opara, and M. Vesenjak: Compos. Struct., 2018, vol. 192, pp. 184-92.
3.
Zurück zum Zitat Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya. O. Kuwazuru, and N. Yoshikawa (2013) Metall. Mater. Trans. A, vol. 44A, pp. 1880-86. Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya. O. Kuwazuru, and N. Yoshikawa (2013) Metall. Mater. Trans. A, vol. 44A, pp. 1880-86.
4.
Zurück zum Zitat 4.W. Zhao, S.Y. He, Y. Zhang, C. Zhang, G.Y. Tang, and G. Dai: Mater. Lett., 2020, vol. 266, pp. 1-4. 4.W. Zhao, S.Y. He, Y. Zhang, C. Zhang, G.Y. Tang, and G. Dai: Mater. Lett., 2020, vol. 266, pp. 1-4.
5.
Zurück zum Zitat 5.M.A. Islam, M.A. Kader, O.J. Hazell, J.P. Escobedo, A.D. Brown, and M. Saadatfar: Mater. Des., 2020, vol. 191, pp. 1-8. 5.M.A. Islam, M.A. Kader, O.J. Hazell, J.P. Escobedo, A.D. Brown, and M. Saadatfar: Mater. Des., 2020, vol. 191, pp. 1-8.
6.
Zurück zum Zitat 6.B.H.G. Jigh, H.H. Toudeshky, and M.A. Farsi: J. Alloys Compd., 2017, vol. 695, pp. 133-41. 6.B.H.G. Jigh, H.H. Toudeshky, and M.A. Farsi: J. Alloys Compd., 2017, vol. 695, pp. 133-41.
7.
Zurück zum Zitat 7.M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, and M. Turner: Int. J. Impact Eng., 2018, vol. 114, pp. 111-22. 7.M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, and M. Turner: Int. J. Impact Eng., 2018, vol. 114, pp. 111-22.
8.
Zurück zum Zitat 8.M. Vesenjak, M.A. Sulong, L.K. Opara, M. Borovinsek, V. Mathier, and T. Fiedler: Mech. Mater., 2016, vol. 93, pp. 96-108. 8.M. Vesenjak, M.A. Sulong, L.K. Opara, M. Borovinsek, V. Mathier, and T. Fiedler: Mech. Mater., 2016, vol. 93, pp. 96-108.
9.
Zurück zum Zitat 9.B.Y. Su, C.M. Huang, H. Sheng, and W.Y. Jang: Mater. Charact., 2018, 135, pp. 203-13. 9.B.Y. Su, C.M. Huang, H. Sheng, and W.Y. Jang: Mater. Charact., 2018, 135, pp. 203-13.
10.
Zurück zum Zitat 10.X. Lijun, and S. Weidong: Int. J. Impact Eng., 2018, vol. 111, pp. 255-72. 10.X. Lijun, and S. Weidong: Int. J. Impact Eng., 2018, vol. 111, pp. 255-72.
11.
Zurück zum Zitat 11.S. Sahu, D.P. Mondal, J.U. Cho, M.D. Goel, and M.Z. Ansari: Composites Part B, 2019, vol. 160, pp. 394-401. 11.S. Sahu, D.P. Mondal, J.U. Cho, M.D. Goel, and M.Z. Ansari: Composites Part B, 2019, vol. 160, pp. 394-401.
12.
Zurück zum Zitat 12.Y. Sun, and Q.M. Li: Int. J. Impact Eng., 2018, vol. 112, pp. 74-115. 12.Y. Sun, and Q.M. Li: Int. J. Impact Eng., 2018, vol. 112, pp. 74-115.
13.
Zurück zum Zitat 13.M.A. Kader, A.D. Brown, P.J. Hazell, V. Robins, J.P. Escobedo, and M. Saadatfar: Int. J. Impact Eng., 2020, vol. 139, pp. 1-17. 13.M.A. Kader, A.D. Brown, P.J. Hazell, V. Robins, J.P. Escobedo, and M. Saadatfar: Int. J. Impact Eng., 2020, vol. 139, pp. 1-17.
14.
Zurück zum Zitat 14.J. Fang, Y. Gao, X. An, G. Sun, J. Chena, and Q. Li: Composites Part B, 2016, vol. 92, pp. 338-49. 14.J. Fang, Y. Gao, X. An, G. Sun, J. Chena, and Q. Li: Composites Part B, 2016, vol. 92, pp. 338-49.
15.
Zurück zum Zitat 15.F. Xiong, D. Wang, and S. Yin: Mater. Des., 2018, vol. 156, pp. 198-214. 15.F. Xiong, D. Wang, and S. Yin: Mater. Des., 2018, vol. 156, pp. 198-214.
16.
Zurück zum Zitat 16.D.K. Rajak, N.N. Mahajan, E. Linul: J. Alloys Compd., 2019, vol. 775, pp. 675-89. 16.D.K. Rajak, N.N. Mahajan, E. Linul: J. Alloys Compd., 2019, vol. 775, pp. 675-89.
17.
Zurück zum Zitat 17.X. Yang, T, An, Z. Wu, T. Zou, H. Song, J. Sha, C. He, and N. Zhao: Compos. Struct., 2020, vol. 245, 112357. 17.X. Yang, T, An, Z. Wu, T. Zou, H. Song, J. Sha, C. He, and N. Zhao: Compos. Struct., 2020, vol. 245, 112357.
18.
Zurück zum Zitat Y. Zhang, X.Y. Zang, K. Wang, S.Y He, J.G Liu, W. Zhao, X.L. Gong, and J. Yu (2020) Mater. Lett. vol. 264, 127292. Y. Zhang, X.Y. Zang, K. Wang, S.Y He, J.G Liu, W. Zhao, X.L. Gong, and J. Yu (2020) Mater. Lett. vol. 264, 127292.
19.
Zurück zum Zitat S.Y. He, Y.N. Lv, S.T. Chen, G. Dai, J.G. Liu, and M.K. Huo (2020) Mater. Sci. Eng. A, vol. 772, pp. 1-12. S.Y. He, Y.N. Lv, S.T. Chen, G. Dai, J.G. Liu, and M.K. Huo (2020) Mater. Sci. Eng. A, vol. 772, pp. 1-12.
20.
Zurück zum Zitat 20.Y. Duan, X. Zhao, Z. Liu, N. Hou, H. Liu, B. Du, B. Hou, and Y. Li: Composites Part B, 2020, vol. 183, 107630. 20.Y. Duan, X. Zhao, Z. Liu, N. Hou, H. Liu, B. Du, B. Hou, and Y. Li: Composites Part B, 2020, vol. 183, 107630.
21.
Zurück zum Zitat 21.Y. Duan, X. Zhao, B. Du, X. Shi, H. Zhao, B. Hou, and Y. Li: Int. J. Mech. Sci., 2020, vol. 177, pp. 1-14. 21.Y. Duan, X. Zhao, B. Du, X. Shi, H. Zhao, B. Hou, and Y. Li: Int. J. Mech. Sci., 2020, vol. 177, pp. 1-14.
22.
Zurück zum Zitat Y. Hangai, N. Kubota, T. Utsunomiya, H. Kawashima, O. Kuwazuru, and N. Yoshikawa: Mater. Sci. Eng. A, 2015, vol. 639, pp. 597-603. Y. Hangai, N. Kubota, T. Utsunomiya, H. Kawashima, O. Kuwazuru, and N. Yoshikawa: Mater. Sci. Eng. A, 2015, vol. 639, pp. 597-603.
23.
Zurück zum Zitat J. Zhang, L. Chen, H. Wu, Q. Fang, and Y. Zhang (2020) Compos. Struct., vol. 241, pp. 1-12. J. Zhang, L. Chen, H. Wu, Q. Fang, and Y. Zhang (2020) Compos. Struct., vol. 241, pp. 1-12.
24.
Zurück zum Zitat 24.M.S. Attia, S.A. Meguid, and H. Nouraei: Finite Elem. Anal. Des., 2012, vol. 61, pp. 50-59. 24.M.S. Attia, S.A. Meguid, and H. Nouraei: Finite Elem. Anal. Des., 2012, vol. 61, pp. 50-59.
25.
Zurück zum Zitat 25.H. Yin, G. Wen, S. Hou, and Q. Qing: Mater. Des., 2013, vol. 44, pp. 414-28. 25.H. Yin, G. Wen, S. Hou, and Q. Qing: Mater. Des., 2013, vol. 44, pp. 414-28.
26.
Zurück zum Zitat Y. Zhang, S.Y. He, J.G Liu, W. Zhao, X.L Gong, and J. Yu (2019) Compos. Struct. vol. 220, pp. 451-59. Y. Zhang, S.Y. He, J.G Liu, W. Zhao, X.L Gong, and J. Yu (2019) Compos. Struct. vol. 220, pp. 451-59.
27.
Zurück zum Zitat 27.X. Yu, Q. Qin, J. Zhang, S. He, C. Xiang, M. Wang, and T.J. Wang: Compos. Struct., 2018, vol. 201, pp. 423-33. 27.X. Yu, Q. Qin, J. Zhang, S. He, C. Xiang, M. Wang, and T.J. Wang: Compos. Struct., 2018, vol. 201, pp. 423-33.
28.
Zurück zum Zitat 28.G. Li, Z. Zhang, G. Sun, F. Xu, and X. Huang: Int. J. Mech. Sci., 2014, 89, pp. 439-52. 28.G. Li, Z. Zhang, G. Sun, F. Xu, and X. Huang: Int. J. Mech. Sci., 2014, 89, pp. 439-52.
29.
Zurück zum Zitat 29.O. Mohammadiha, and H. Ghariblu: Thin Walled Struct., 2016, vol. 98, pp. 627-39. 29.O. Mohammadiha, and H. Ghariblu: Thin Walled Struct., 2016, vol. 98, pp. 627-39.
30.
Zurück zum Zitat 30.M. Salehi, S.M.H. Mirbagheri, and M. Arabkohi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5494-5509. 30.M. Salehi, S.M.H. Mirbagheri, and M. Arabkohi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5494-5509.
31.
Zurück zum Zitat 31.N. Movahedi, S.M.H. Mirbagheri, and S.R. Hosseini: Met. Mater. Int., 2014, vol. 20, pp. 757-63. 31.N. Movahedi, S.M.H. Mirbagheri, and S.R. Hosseini: Met. Mater. Int., 2014, vol. 20, pp. 757-63.
32.
Zurück zum Zitat 32.A. Baroutaji, M. Sajjia, and A.G. Olabi: Thin Walled Struct., 2017, vol. 118, pp. 137-63. 32.A. Baroutaji, M. Sajjia, and A.G. Olabi: Thin Walled Struct., 2017, vol. 118, pp. 137-63.
33.
Zurück zum Zitat 33.M. Li, J. Li, S. Barbat, R. Baccouche, and W. Lu: Compos. Struct., 2018, vol. 200, pp. 120-26. 33.M. Li, J. Li, S. Barbat, R. Baccouche, and W. Lu: Compos. Struct., 2018, vol. 200, pp. 120-26.
34.
Zurück zum Zitat 34.M. Li, S. Barbat, R. Baccouche, J. Belwafa, W. Lu: Composites Part B, 2020. vol. 193, pp. 1-10. 34.M. Li, S. Barbat, R. Baccouche, J. Belwafa, W. Lu: Composites Part B, 2020. vol. 193, pp. 1-10.
35.
Zurück zum Zitat 35.G. Sun, T. Liu, X. Huang, G. Zheng, and Q. Li: Eng. Struct., 2018, vol. 155, pp. 235-50. 35.G. Sun, T. Liu, X. Huang, G. Zheng, and Q. Li: Eng. Struct., 2018, vol. 155, pp. 235-50.
36.
Zurück zum Zitat 36.M.J. Rezvani, and H. Souzangarzadeh: J. Storage Mater., 2020, vol. 27, 101071. 36.M.J. Rezvani, and H. Souzangarzadeh: J. Storage Mater., 2020, vol. 27, 101071.
37.
Zurück zum Zitat 37.G. Zhu, S. Li, G. Sun, G. Li, and Q. Li: Thin Walled Struct., 2016, vol. 109, pp. 377-89. 37.G. Zhu, S. Li, G. Sun, G. Li, and Q. Li: Thin Walled Struct., 2016, vol. 109, pp. 377-89.
38.
Zurück zum Zitat J. Fan, J. Zhang, Z. Wang, Z. Li, and L. Zhao: Mater. Sci. Eng. A, 2013, vol. 561, pp. 352-61. J. Fan, J. Zhang, Z. Wang, Z. Li, and L. Zhao: Mater. Sci. Eng. A, 2013, vol. 561, pp. 352-61.
39.
Zurück zum Zitat 39.L.J. Gibson, and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Cambridge Solid State Science Series, London, 1997, pp. 175-231. 39.L.J. Gibson, and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Cambridge Solid State Science Series, London, 1997, pp. 175-231.
40.
Zurück zum Zitat 40.X. Zhou, Y. Li, and X. Chen: J. Mater. Process. Technol., 2020, vol. 283, pp. 1-11. 40.X. Zhou, Y. Li, and X. Chen: J. Mater. Process. Technol., 2020, vol. 283, pp. 1-11.
41.
Zurück zum Zitat I. Cantat, S.C. Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F, Rouyer, and A. Saint-Jalmes (2013) Foams Structure and dynamics. 1st edn. Oxford University Press, London. pp. 17-30. I. Cantat, S.C. Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F, Rouyer, and A. Saint-Jalmes (2013) Foams Structure and dynamics. 1st edn. Oxford University Press, London. pp. 17-30.
42.
Zurück zum Zitat 42.M. Mukherjee, F.G. Moreno, C. Jimenez, A. Rack, and J. Banhart: Acta Mater., 2017, vol. 131, pp. 156-68. 42.M. Mukherjee, F.G. Moreno, C. Jimenez, A. Rack, and J. Banhart: Acta Mater., 2017, vol. 131, pp. 156-68.
43.
Zurück zum Zitat 43.J.Y. Yuan, and Y.X. Li: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1619-25. 43.J.Y. Yuan, and Y.X. Li: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1619-25.
44.
Zurück zum Zitat 44.J.W. Ming, F.Z. Tian, and L.D. Jun: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 7-13. 44.J.W. Ming, F.Z. Tian, and L.D. Jun: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 7-13.
45.
Zurück zum Zitat 45.ASM Handbook Committee: Metals Handbook, 2nd ed., vol. 3, Alloy phase diagrams, ASM International, Materials Park, Ohio, 1990. 45.ASM Handbook Committee: Metals Handbook, 2nd ed., vol. 3, Alloy phase diagrams, ASM International, Materials Park, Ohio, 1990.
46.
Zurück zum Zitat 46.G. E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-hill Education, New York, 1986, pp. 81-95. 46.G. E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-hill Education, New York, 1986, pp. 81-95.
47.
Zurück zum Zitat 47.U.A. Atturan, S.H. Nandam, B.S. Murty and S. Sankaran: Mater. Sci. Eng. A, 2017, vol. 684, pp. 178-85. 47.U.A. Atturan, S.H. Nandam, B.S. Murty and S. Sankaran: Mater. Sci. Eng. A, 2017, vol. 684, pp. 178-85.
48.
Zurück zum Zitat R. Huang, S. Ma, M. Zhang, J. Xu, and Z. Wang: Mater. Sci. Eng. A, 2019, vol. 756, pp. 302-13. R. Huang, S. Ma, M. Zhang, J. Xu, and Z. Wang: Mater. Sci. Eng. A, 2019, vol. 756, pp. 302-13.
49.
Zurück zum Zitat D. Ruan, G. Lu. F.L. Chen, and E. Siores (2002) Compos. Struct., vol. 56, pp. 331-36. D. Ruan, G. Lu. F.L. Chen, and E. Siores (2002) Compos. Struct., vol. 56, pp. 331-36.
50.
Zurück zum Zitat 50.J. Shen, G. Lu, and D. Ruan: Composites Part B, 2019, vol. 41, pp. 678-85. 50.J. Shen, G. Lu, and D. Ruan: Composites Part B, 2019, vol. 41, pp. 678-85.
51.
Zurück zum Zitat 51.T. Dirgantara, A. Jusuf, E.O. Kurniati, L. Gunawan, and I..S. Putra: Thin Walled Struct., 2018, vol. 129, pp. 365-80. 51.T. Dirgantara, A. Jusuf, E.O. Kurniati, L. Gunawan, and I..S. Putra: Thin Walled Struct., 2018, vol. 129, pp. 365-80.
52.
Zurück zum Zitat 52.Y. Hangai, S. Otazawa, and T. Utsunomiya: Compos. Struct., 2018, vol. 183, pp. 416-22. 52.Y. Hangai, S. Otazawa, and T. Utsunomiya: Compos. Struct., 2018, vol. 183, pp. 416-22.
53.
Zurück zum Zitat 53.C. Ge, Q. Gao, L. Wang, and Z. Hong: Thin Walled Struct., 2020, vol. 149, pp. 1-10. 53.C. Ge, Q. Gao, L. Wang, and Z. Hong: Thin Walled Struct., 2020, vol. 149, pp. 1-10.
54.
Zurück zum Zitat Y. Hangai, H. Ikeda, K. Amagai, R. Suzuki. M. Matsubara, and N. Yoshikawa (2018) Metall. Mater. Trans. A, vol. 49A, pp. 4452-55. Y. Hangai, H. Ikeda, K. Amagai, R. Suzuki. M. Matsubara, and N. Yoshikawa (2018) Metall. Mater. Trans. A, vol. 49A, pp. 4452-55.
55.
Zurück zum Zitat Y. Hangai, T. Morita, and T. Utsunomiya: Mater. Sci. Eng. A, 2017, vol. 696, pp. 544-51. Y. Hangai, T. Morita, and T. Utsunomiya: Mater. Sci. Eng. A, 2017, vol. 696, pp. 544-51.
56.
Zurück zum Zitat 56.Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3585-89. 56.Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3585-89.
57.
Zurück zum Zitat 57.B. Koohbor, and A. Kidane: Int. J. Mech. Sci., 2013, vol. 68, pp. 151-61. 57.B. Koohbor, and A. Kidane: Int. J. Mech. Sci., 2013, vol. 68, pp. 151-61.
58.
Zurück zum Zitat 58.L. Maheo, and P. Viot: Int. J. Impact Eng., 2013, vol. 53, pp. 84-93. 58.L. Maheo, and P. Viot: Int. J. Impact Eng., 2013, vol. 53, pp. 84-93.
59.
Zurück zum Zitat 59.N. Gardner, E. Wang, and A. Shukla: Compos. Struct., 2012, vol. 94, pp. 1755-70. 59.N. Gardner, E. Wang, and A. Shukla: Compos. Struct., 2012, vol. 94, pp. 1755-70.
60.
Zurück zum Zitat 60.X. Zhang, and H. Zhang: Mater. Des., 2016, vol. 102, pp. 199-211. 60.X. Zhang, and H. Zhang: Mater. Des., 2016, vol. 102, pp. 199-211.
61.
Zurück zum Zitat 61.X. Liu, J. Zhang, Q. Fang, H. Wu, and Y. Zhang: Int. J. Impact Eng., 2016, vol. 110, pp. 382-94. 61.X. Liu, J. Zhang, Q. Fang, H. Wu, and Y. Zhang: Int. J. Impact Eng., 2016, vol. 110, pp. 382-94.
62.
Zurück zum Zitat 62.Q. Fang, J. Zhang, Y. Zhang, J. Liu, and Z. Gong: Compos. Struct., 2015, vol. 124, pp. 409-20. 62.Q. Fang, J. Zhang, Y. Zhang, J. Liu, and Z. Gong: Compos. Struct., 2015, vol. 124, pp. 409-20.
63.
Zurück zum Zitat 63.M.J. Nayyeri, and S.M.H. Mirbagheri: Mater. Lett., 2016, vol. 185, pp. 89-91. 63.M.J. Nayyeri, and S.M.H. Mirbagheri: Mater. Lett., 2016, vol. 185, pp. 89-91.
Metadaten
Titel
Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes Under Drop-Weight Impact Testing
verfasst von
M. Salehi
S. M. H. Mirbagheri
A. Jafari Ramiani
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05928-5

Weitere Artikel der Ausgabe 10/2020

Metallurgical and Materials Transactions A 10/2020 Zur Ausgabe

Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses

Phase Stress Partition in Gray Cast Iron Using In Situ Neutron Diffraction Measurements

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.