Skip to main content
Erschienen in: Strength of Materials 2/2021

08.07.2021

Deformation Relief of the Surface as a Characteristic of Fatigue Damage of Clad Aluminum Alloys. Part 2. Fatigue Degradation of a Cladding Layer

verfasst von: S. R. Ignatovich, M. V. Karuskevich, S. S. Yutzkevich

Erschienen in: Strength of Materials | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The cladding of aircraft aluminum alloys for their corrosion protection will deteriorate the fatigue strength. This phenomenon can be explained by more intensive plastic deformation and loosening (degradation) of the cladding layer as compared to the base material. A phenomenological model is proposed to describe the degradation that is based on the concept of the change in the cladding layer volume with its surface area due to the formation and evolution of the deformation relief. An increase in the volume may be associated with the accumulation of continuity defects (microcracks, pores) in the surface layer, which initiate the fatigue cracks in the base material. A relative increase in the material volume is characterized by the degradation measure, which is determined by the surface plastic strain and ratio fractal parameter equal to the deformation relief area – their perimeter. Within the proposed model and the change in the cladding layer degradation with the surface saturation a deformation relief clusters was investigated available experimental data. The degradation measure against saturation is described by power, functions and has two sections. The degradation intensity starts growing when the deformation relief clusters occupy approximately 25% of the surface area. The intensification of degradation becomes more pronounced if represented as its measure against the area–perimeter ratio of the deformation relief clusters. It gives grounds to advance the fractal parameter as a diagnostic characteristic of cladding layer damageability under cyclic loading at the stage preceding the fatigue crack nucleation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The density defect of plastically deformed materials can reach 1% [11, 12].
 
Literatur
1.
Zurück zum Zitat J. Schijve, F. A. Jacobs, and P. J. Tromp, The Significance of Cladding for Fatigue of Aluminium Alloys in Aircraft Structures, Report NLR TR76065 U, National Aerospace Laboratory NLR (1976). J. Schijve, F. A. Jacobs, and P. J. Tromp, The Significance of Cladding for Fatigue of Aluminium Alloys in Aircraft Structures, Report NLR TR76065 U, National Aerospace Laboratory NLR (1976).
2.
Zurück zum Zitat L. V. Agamirov (Ed.), Strength of Machines and Structures at Variable Loads [in Russian], MATI, Moscow (2001). L. V. Agamirov (Ed.), Strength of Machines and Structures at Variable Loads [in Russian], MATI, Moscow (2001).
3.
Zurück zum Zitat A. T. Pankov, Effect of the Cladding Layer on the Strength Characteristics of Structural Aluminum Alloys and Efficiency of Their Corrosion Protection [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Kiev (1975). A. T. Pankov, Effect of the Cladding Layer on the Strength Characteristics of Structural Aluminum Alloys and Efficiency of Their Corrosion Protection [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Kiev (1975).
4.
Zurück zum Zitat S. R. Ignatovich and M. V. Karuskevich, Monitoring of the Fatigue Life of Aircrafts [in Russian], NAU, Kyiv (2014). S. R. Ignatovich and M. V. Karuskevich, Monitoring of the Fatigue Life of Aircrafts [in Russian], NAU, Kyiv (2014).
5.
Zurück zum Zitat A. V. Karlashov, R. G. Gainutdinov, and Zh. Baishumurov, “Effect of the thickness of the cladding layer on the fatigue and corrosion-fatigue life of aluminum alloy sheet material,” Mater. Sci., 11, No. 4, 418–420 (1975).CrossRef A. V. Karlashov, R. G. Gainutdinov, and Zh. Baishumurov, “Effect of the thickness of the cladding layer on the fatigue and corrosion-fatigue life of aluminum alloy sheet material,” Mater. Sci., 11, No. 4, 418–420 (1975).CrossRef
6.
Zurück zum Zitat R. J. H. Wanhill, Effects of Cladding and Anodising on Flight Simulation Fatigue of 2024-T3 and 7475-T761 Aluminium Alloys, Report NLR TR 85006 L, National Aerospace Laboratory NLR (1985). R. J. H. Wanhill, Effects of Cladding and Anodising on Flight Simulation Fatigue of 2024-T3 and 7475-T761 Aluminium Alloys, Report NLR TR 85006 L, National Aerospace Laboratory NLR (1985).
7.
Zurück zum Zitat J. C. Newman, Jr., X. R. Wu, S. L. Venneri, and C. G. Li, Small-Crack Effects in High-Strength Aluminum Alloys, NASA Reference Publication 1309, NASA (1994). J. C. Newman, Jr., X. R. Wu, S. L. Venneri, and C. G. Li, Small-Crack Effects in High-Strength Aluminum Alloys, NASA Reference Publication 1309, NASA (1994).
8.
Zurück zum Zitat S. R. Ignatovich, V. N. Shmarov, and S. S. Yutskevich, “Features of the deformation relief formation on the surface of a D16AT alloy on fatigue,” Aviats.-Kosm. Tekhn. Tekhnol., No. 10, 132–136 (2009). S. R. Ignatovich, V. N. Shmarov, and S. S. Yutskevich, “Features of the deformation relief formation on the surface of a D16AT alloy on fatigue,” Aviats.-Kosm. Tekhn. Tekhnol., No. 10, 132–136 (2009).
9.
Zurück zum Zitat V. M. Goritskii and V. F. Terent’ev, Structure and Fatigue Fracture of Metals [in Russian], Metallurgiya, Moscow (1980). V. M. Goritskii and V. F. Terent’ev, Structure and Fatigue Fracture of Metals [in Russian], Metallurgiya, Moscow (1980).
10.
Zurück zum Zitat S. Kotsan’da, Fatigue Cracking of Metals [in Russian], Metallurgiya, Moscow (1990). S. Kotsan’da, Fatigue Cracking of Metals [in Russian], Metallurgiya, Moscow (1990).
11.
Zurück zum Zitat O. G. Rybakina and Ya. S. Sidorin, “Experimental study on the plastic loosening mechanism of metals,” Inzh. Zhurn. Mekh. Tverd. Tela, No. 1, 120–124 (1966). O. G. Rybakina and Ya. S. Sidorin, “Experimental study on the plastic loosening mechanism of metals,” Inzh. Zhurn. Mekh. Tverd. Tela, No. 1, 120–124 (1966).
12.
13.
Zurück zum Zitat S. R. Ignatovich, M. V. Karuskevich, and S. S. Yutskevich, “Deformation relief of the surface as a characteristic of fatigue damage of clad aluminum alloys. Part 1. Deformation relief evolution under cyclic loading,” Strength Mater., 52, No. 5, 707–714 (2020), https://doi.org/10.1007/s11223-020-00223-5.CrossRef S. R. Ignatovich, M. V. Karuskevich, and S. S. Yutskevich, “Deformation relief of the surface as a characteristic of fatigue damage of clad aluminum alloys. Part 1. Deformation relief evolution under cyclic loading,” Strength Mater., 52, No. 5, 707–714 (2020), https://​doi.​org/​10.​1007/​s11223-020-00223-5.CrossRef
14.
Zurück zum Zitat S. R. Ignatovich and S. S. Yutskevich, “Fatigue control of a D16AT alloy by deformation surface relief characteristics,” Fiz.-Khim. Mekh. Mater., 47, No. 5, 60–65 (2011). S. R. Ignatovich and S. S. Yutskevich, “Fatigue control of a D16AT alloy by deformation surface relief characteristics,” Fiz.-Khim. Mekh. Mater., 47, No. 5, 60–65 (2011).
15.
Zurück zum Zitat S. R. Ignatovich, A. Menou, M. V. Karuskevich, and P. O. Maruschak, “Fatigue damage and sensor development for aircraft structural health monitoring,” Theor. Appl. Fract. Mec., 65, 23–27 (2013).CrossRef S. R. Ignatovich, A. Menou, M. V. Karuskevich, and P. O. Maruschak, “Fatigue damage and sensor development for aircraft structural health monitoring,” Theor. Appl. Fract. Mec., 65, 23–27 (2013).CrossRef
16.
Zurück zum Zitat M. Petrasek, S. Ignatovich, M. Karuskevich, and T. Maslak, “Surface of metal as an indicator of fatigue damage,” Adv. Military Technol., 8, No. 2, 83–91 (2013). M. Petrasek, S. Ignatovich, M. Karuskevich, and T. Maslak, “Surface of metal as an indicator of fatigue damage,” Adv. Military Technol., 8, No. 2, 83–91 (2013).
17.
Zurück zum Zitat S. R. Ignatovich, M. V. Karuskevich, S. S. Yutskevych, “Evolution of the deformation relief on the surface of a clad aluminum alloy at random cyclic loads,” Int. J. Fatigue, 101, Part 1, 45–50 (2017). S. R. Ignatovich, M. V. Karuskevich, S. S. Yutskevych, “Evolution of the deformation relief on the surface of a clad aluminum alloy at random cyclic loads,” Int. J. Fatigue, 101, Part 1, 45–50 (2017).
Metadaten
Titel
Deformation Relief of the Surface as a Characteristic of Fatigue Damage of Clad Aluminum Alloys. Part 2. Fatigue Degradation of a Cladding Layer
verfasst von
S. R. Ignatovich
M. V. Karuskevich
S. S. Yutzkevich
Publikationsdatum
08.07.2021
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2021
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00280-4

Weitere Artikel der Ausgabe 2/2021

Strength of Materials 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.